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We can more precisely tune attention to highly rewarding objects
than other objects in our environment, but how our brains do this is
unknown. After a few trials of searching for the same object,
subjects’ electrical brain activity indicated that they handed off the
memory representations used to control attention from working
memory to long-term memory. However, when a large reward was
possible, the neural signature of working memory returned as
subjects recruited working memory to supplement the cognitive
control afforded by the representations accumulated in long-term
memory. The amplitude of this neural signature of working memory
predicted the magnitude of the subsequent behavioral reward-
based attention effects across tasks and individuals, showing the
ubiquity of this cognitive reaction to high-stakes situations.
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Introduction

Reward has profound effects in shaping behavior and learn-
ing (Rescorla and Wagner 1972). Neuroscientists have made
substantial progress examining reward processing at the mol-
ecular and neuronal levels (Tobler et al. 2005; Björklund and
Dunnett 2007; Penny 2011), as well as in large-scale networks
(O’Doherty 2004; Vickery et al. 2011).

However, it is yet unclear how the opportunity to earn
additional reward influences what information is selected by
attention (Della Libera and Chelazzi 2006; Serences 2008;
Peck et al. 2009; Raymond and O’Brien 2009). Our goal here
was to determine whether changes in the nature of top-down
attentional control underlie these reward-based modulations
of performance that require selective information processing
by the brain.

To test the hypothesis that changes in top-down attentional
control are responsible for reward-based attention effects,
we developed a new technique to simultaneously measure
separate human event-related potentials (ERPs) indexing the
working and long-term memory representations that control
visual attention. The contralateral delay activity (or CDA) of
subjects’ ERPs was used to track the maintenance of target
representations in visual working memory, known as atten-
tional templates (Carlisle et al. 2011). The CDA is a sustained
posterior negativity, contralateral to the location where an
object had appeared, as it is actively maintained in visual
working memory (Vogel and Machizawa 2004; Vogel et al.
2005; Woodman and Vogel 2008). A separate component,
the anterior P1 component, was used to directly measure the
accumulation of long-term memory representations. In the
present study, we call this anterior P1 effect, the P170 com-
ponent, based on previous work, showing that this frontocen-
tral positivity is observable during memory tasks using simple

geometric shapes (Voss et al. 2010) and appears to reflect the
accumulation of information that supports successful recog-
nition via familiarity (Tsivilis et al. 2001; Duarte et al. 2004;
Friedman 2004; Diana et al. 2005). This waveform is more
negative when a given stimulus has previously been stored in
long-term memory and is encountered again. Here, we used
simultaneous measurements of the CDA and P170 to deter-
mine the roles that working and long-term memory represen-
tations play in controlling attention and how those roles
change when reward is at stake.

It is possible that, when high rewards are at stake, the brain
uses redundant target representations in both working and
long-term memories, even though representations of just
one type are sufficient to guide attention. If we maintain a rep-
resentation of the task-relevant object in both visual working
and long-term memories, then both sources of top-down
control can converge on the same critical perceptual input,
increasing its attentional priority. To determine whether this
type of redundancy gain underlies reward-driven changes in
performance, we examined the influence of reward incentives
on visual working memory after several trials of searching for
the same target occurred, and subjects were beginning to rely
on long-term memory to control attention (Logan 1988, 2002;
Anderson 2000). If this redundant-template hypothesis is
correct, then the opportunity to earn additional reward should
result in a reinstatement of the CDA measuring the mainten-
ance of the attentional template in visual working memory
even after long-term memory representations have begun to
control attention.

Materials and Methods

Subjects
Different groups of 15 volunteers (18–32 years of age) participated in
each experiment in exchange for monetary compensation. All partici-
pants had normal color vision, and normal or corrected-to-normal
visual acuity. All procedures were approved by the Vanderbilt Univer-
sity Institution Review Board and consented to by the subjects prior
to the beginning of the experiment.

Stimuli
Stimuli were presented against a gray background (54.3 cd/m2) at a
viewing distance of 114 cm. A black fixation cross (<0.01 cd/m2,
0.4 × 0.4° of visual angle) was visible throughout each trial. Reward
stimuli were outlined circles (0.88° diameter and 0.13° thick) pre-
sented at the center of the monitor. Both low and high rewards were
distinguished by color (blue: x = 0.146, y = 0.720, 6.41 cd/m2; yellow:
x = 0.408, y = 0.505, 54.1 cd/m2), with the assignment of color to
reward amount counterbalanced across subjects. The elements in the
cue and search arrays were Landolt-C stimuli (0.88° diameter, 0.13°
thick, and 0.22° gap width), of 8 possible orientations (0°, 22.5°, 45°,
67.5°, 90°, 112.5°, 135°, and 157.5°), 1 of which was green (x = 0.281,
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y = 0.593, 45.3 cd/m2) and the others red (x = 0.612, y = 0.333, 15.1
cd/m2). The task-relevant color of the cue stimulus was determined
prior to the start of each experiment, counterbalanced across subjects.
Each cue stimulus was presented 2.2° to either the left or right of the
center of the monitor.

The search array contained 1 red, 1 green, and 10 black distractor
Landolt-C stimuli (<0.01 cd/m2) arranged similar to the number of
locations on a clock face (centered 4.4° from the middle of the
monitor; Fig. 1A). The target orientation could only appear in the
task-relevant color. All subjects also completed a change-detection
task, identical to that used in previous work (e.g., Vogel et al. 2005),
to estimate the number of simple colored objects each individual
could remember.

Procedure
In Experiment 1, each trial began with the presentation of the fixation
cross for 1200–1600 ms (randomly jittered using a rectangular distri-
bution). The reward-cue stimulus was presented next for 200 ms, fol-
lowed by the target-cue stimuli for 100 ms. Following a 1000-ms
interval in which the screen was blank other than the fixation point,
we then presented the search array for 2000 ms. The final stimulus
event of each trial was a feedback screen displaying the current
and total cents earned. On low-reward trials, subjects earned 1 cent
($0.01) for a correct response within 2000 ms, and no penalty for an
incorrect or missed response. On high-reward trials, subjects earned
5 cents ($0.05) for a correct response within 2000 ms and were pena-
lized 50 cents ($0.50) for an incorrect response. Subjects were aware
that money earned for performance would be added to their hourly
compensation ($10.00), which typically totalled $15.00, leaving
subjects with a total compensation of approximately $45.00.

Experiments 2 and 3 were identical to Experiment 1 with a few key
exceptions. In Experiment 2, no explicit reward precue was used.
Subjects instead learned to associate both low- and high-reward trials
with the orientation of the task-relevant cue stimulus (i.e., orien-
tations at 0°, 45°, 90°, and 135° vs orientations at 22.5°, 67.5°, 112.5°,
and 157.5°). The mapping of reward values to these 2 classes of orien-
tations was counterbalanced across subjects. In Experiment 3, the
search array that presented in Experiment 1 was replaced with a cen-
tered black Landolt-C stimulus presented for 100 ms.

Because error responses were infrequent (0–8% of trials across
subjects and experiments), the penalty for incorrect, high-reward
trials rarely occurred. However, to verify that the effects we observed
were due to the reward payoffs and not the avoidance of losses, we
ran Experiment 4 that was identical to Experiment 1 except that no
penalties existed and only differential reward occurred for both low-
versus high-reward trials (1 vs. 5 cents gains for correct responses
within the 2-s window).

The target-cue stimulus remained the same color, orientation, and
location throughout each run of 7 trials. The target presented during
visual search (Experiments 1, 2, and 4) or the target discrimination
task (Experiment 3) matched the shape of the task-relevant cue on
half the total number of trials. The cued target orientation and target
presence (present or absent) were randomly selected on each trial for
all experiments. Target location was randomized on each trial for
Experiments 1, 2, and 4. In Experiments 1, 3, and 4, 75% of all trials
were preceded by low-reward cues with the remainder being pre-
ceded by high-reward cues. Ninety-five percent of the high-reward
cues were presented on the fifth target repetition during the same-
target runs. The remaining 5% of high-reward cues were evenly dis-
tributed across the remaining 6 serial positions in the same-target
runs. In Experiment 2, because reward incentives were the same
within each run of 7 trials, runs were randomized with the constraint
that half would be high reward. Participants were instructed to
respond to the search array (Experiments 1, 2, and 4) or the possible
target stimulus (Experiment 3) by pressing one button on a handheld
gamepad (Logitech Precision) to indicate the target presence and a
different button to indicate the target absence, using the thumb of
their right hand, giving equal importance to speed and accuracy. In
every experiment, each participant performed 2 blocks of 420 trials
(i.e. 840 trials in total or 120 runs containing 7 trials each), including

a 30-s break approximately every 65 trials with the constraint that
breaks would not interrupt a run of trials.

The electroencephalogram was acquired (250-Hz sampling rate,
0.01–100 Hz bandpass filter) using an SA Instrumentation Amplifier
from 21 tin (Sn) electrodes arrayed according to the International
10–20 System, including 3 midline (Fz, Cz, and Pz), 7 lateral pairs
(F3/F4, C3/C4, P3/P4, PO3/PO4, T3/T4, T5/T6, and O1/O2), and 2
nonstandard electrodes (OL, halfway between O1 and T5; and OR

Figure 1. Stimuli and results from Experiment 1. (A) A precue stimulus (blue or
yellow circle) signaled whether the trial was low or high reward. The task-relevant
object in the cue array (red or green Landolt-C), signaled the shape of the target in
the search array. Feedback was given at the end of each trial. Central fixation was
maintained for the trial duration. (B) Reaction times (RTs) across target repetitions
following low-reward cues (white), and the critical high-reward cue (green) followed
by trials with low-reward cues (gray). Error bars are 95% confidence intervals. (C)
Grand-average ERP waveforms from posterior and lateral electrodes contralateral (red)
and ipsilateral (black) to the cue location across target repetition. CDA current
density distributions across target repetitions and reward are shown collapsed across
the right and left cue locations with all contralateral activity projected onto the left
hemisphere. (D) CDA amplitude across target repetitions following low-reward cues
(white bars), and the critical high-reward cue (green bar) followed by trials with
low-reward cues (gray bars). Superimposed is the simultaneously measured P170
amplitude across the same low-reward cues (cyan circles) and high reward followed
by low-reward cues (cyan squares). Error bars are as in (B). (E) The relationship
between individual subjects’ CDA amplitude and RT following high- minus low-reward
cues at the same target repetition.
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halfway between O2 and T6), and held on the scalp with an elastic
cap (Electrocap International, Eaton, OH, USA). The right mastoid
electrode served as the online reference for these active electrode
sites. Signals were re-referenced offline to the average of the left and
right mastoids (Nunez 1981). The electrooculogram was recorded by
placing electrodes 1 cm lateral to the external canthi to measure hori-
zontal eye movements and by placing an electrode beneath the left
eye, referenced to the right mastoid, to measure vertical eye move-
ments and blinks. We used a 2-step ocular artifact rejection method
(Woodman and Luck 2003). Trials accompanied by incorrect behav-
ioral responses or ocular or myogenic artifacts were excluded from
the averages.

Data Analysis
We computed visual memory capacity using a standard formula that
estimates the number of objects’ worth of information stored while
correcting for guessing (Cowan 2001).

The CDA was measured at lateral posterior parietal, occipital, and
temporal electrode sites (i.e. PO3/4, O1/2, OL/R, and T5/6) as the
difference in mean amplitude between the ipsilateral and contralateral
waveforms during 300–1000 ms following target cue onset, consistent
with previous CDA experiments (Vogel and Machizawa 2004; Vogel
et al. 2005; Carlisle et al. 2011). The P170 was measured at the fronto-
central electrode site (i.e. Fz) during 170–370 ms following target cue
onset, similar to previous work (Voss et al. 2010). To examine the
effects of the learning and reward manipulations on the deployment
of attention to the targets in the search arrays, we also measured the
N2pc time locked to array onset. The N2pc is a negative-going poten-
tial observed over the posterior cortex contralateral to where in the
visual field attention is focused (Luck and Hillyard 1990; Luck et al.
1993). The N2pc was measured at lateral occipital electrodes (i.e.
OL/R) as the mean difference in amplitude between the ipsilateral
and contralateral waveforms during 200–300 ms following the onset
of the search array in Experiments 1, 2, and 4. Mean amplitudes were
compared across learning and reward conditions by analysis of var-
iance (ANOVAs), and P-values were adjusted using the Greenhouse-
Geisser epsilon correction for nonsphericity (Jennings and Wood
1976). Learning effects from all experiments were assessed across the
critical target repetitions (changes in performance and ERPs between
target repetition 1 through 5; but see Table 1 for additional compari-
sons). Significant results were further analyzed using the Fisher least
significance difference post hoc test. Reward effects were assessed
between low- and high-reward cues at the same serial position of
target repetition (i.e. the fifth trial in a run in Experiments 1, 3, and
4). In Experiment 2, reward effects were assessed by an interaction
between reward value (high vs. low) and target repetition 1 through 5
(but see Table 1 for additional comparisons).

Current density topography analyses were performed in CURRY 6
(Compumedics Neuroscan, Singen, Germany). The interpolated
Boundary Element Method (BEM) model (Fuchs et al. 1998) was
derived from the averaged magnetic resonance imaging data from the
Montreal Neurological Institute. It consisted of 9300 triangular
meshes overall or 4656 nodes, which describe the smoothed inner
skull (2286 nodes), the outer skull (1305 nodes), and the outside of
the skin (1065 nodes). The mean triangle edge lengths (node dis-
tances) were 9 (skin), 6.8 (skull), and 5.1 mm (brain compartment).
Standard conductivity values for the 3 compartments were set to:
skin = 0.33 S/m, skull = 0.0042 S/m, and brain = 0.33 S/m. The Stan-
dardized low-resolution electromagnetic tomography Weighted Accu-
Rate minimum norm Method (SWARM) was estimated using sensor
positions based on the International 10-20 System and a cortical
surface obtained from a segmentation of the CURRY 6 individual re-
ference brain. Current density distributions were drawn either from
CDA difference waves or from P170 waves during the interval follow-
ing target cue onset (CDA: 300–1000 ms and P170: 170–370 ms)
using all of the available electrodes. Prior to constructing CDA differ-
ence waves, data were collapsed across left and right cue locations
and averaged using a procedure that preserved the electrode location
relative to the cue location. All contralateral current density activity
was projected onto the left hemisphere of a 3-dimensional

reconstruction of the cortical surface, and all ipsilateral activity was
projected onto the right hemisphere.

Time-frequency analyses were performed using a continuous
Morlet wavelet decomposition with FieldTrip software (Oostenveld
et al. 2011). The Morlet wavelet is a complex wavelet (i.e. containing
both real and imaginary sinusoidal oscillations) that is convolved with
a Gaussian envelope. The shape of this wavelet is therefore largest at
it center and tapered toward its edges. The Morlet wavelet used here
was defined by a constant ratio (σf = f/7) and a wavelet duration (6σt),
where f is the center frequency and σt = 1/(2πσf). After obtaining
complex time-frequency data points for every individual trial, these
data were transformed into a measure of cross-trial total power,
which involves extracting, squaring, and averaging the magnitude
length of the complex number vectors. This measure contains both
target phase-locked and nonphase-locked components. Power was
estimated in the −200- to 1000-ms window centered on target onset
in 4-ms bins and from 2 to 30 Hz in 1-Hz bins. The data were then
baseline-corrected using the data in the time window centered 200 ms
before target onset. No post-target, 10-Hz power was observed to be
bleeding into the baseline. Single-trial alpha-band power values
(8–12 Hz) were averaged across the 300–1000-ms interval following
target cue onset and extracted.

Table 1
Statistical comparisons during learning (trials 1–7)

Experiment 1
Accuracy df F P-value

Percent correct 6,84 1.500 0.19
Target repetition df F P-value
Search RT 6,84 1.836 0.10
CDA amplitude 6,84 4.553 <0.01
Alpha suppression 6,84 2.592 <0.03
P170 amplitude 6,84 2.457 <0.03

Visual working memory capacity df r P-value
ΔCDA amplitude 14 −0.715 <0.01
ΔP170 amplitude 14 −0.798 <0.01
ΔRT 14 0.730 <0.01

Experiment 2
Accuracy df F P-value
Percent correct (low reward) 6,84 1.138 0.35
Percent correct (high reward) 6,84 0.812 0.56

Target repetition df F P-value
Search RT (low reward) 6,84 2.252 <0.05
Search RT (high reward) 6,84 2.424 <0.04
CDA amplitude (low reward) 6,84 2.684 <0.02
CDA amplitude × Reward 6,84 3.829 <0.01
Alpha suppression (low reward) 6,84 6.420 <0.01
Alpha suppression × Reward 6,84 4.178 <0.01
P170 amplitude (low reward) 6,84 1.866 0.96
P170 amplitude (high reward) 6,84 2.158 <0.05
P170 amplitude × Reward 6,84 0.984 0.44
Visual working memory capacity df r P-value
ΔCDA amplitude (low reward) 14 −0.780 <0.01
ΔP170 amplitude (low reward) 14 −0.681 <0.01
ΔRT (low reward) 14 0.767 <0.01

Experiment 3
Accuracy df F P-value

Percent correct 6,84 1.134 0.35
Target repetition df F P-value

Search RT 6,84 2.873 <0.05
CDA amplitude 6,84 3.401 <0.01
Alpha suppression 6,84 2.475 <0.03
P170 amplitude 6,84 3.153 <0.01
Visual working memory capacity df r P-value
ΔCDA amplitude 14 −0.78 <0.01
ΔP170 amplitude 14 −0.822 <0.01
ΔRT 14 0.767 <0.01

Experiment 4
Accuracy df F P-value

Percent correct 6,84 0.882 0.49
Target repetition df F P-value
Search RT 6,84 2.442 <0.04
CDA amplitude 6,84 4.142 <0.01
P170 amplitude 6,84 2.513 <0.03

Note: ANOVA and correlation analysis summaries using data across all target repetitions from
Experiments 1–4.
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Results

Experiment 1
In Experiment 1, we tested the hypothesis that reward trig-
gered the use of redundant target representations in memory,
while subjects (n = 15) searched complex visual scenes for
target objects. A color precue at the start of each trial (i.e.
yellow or blue circle) signaled the potential for either low
(correct response = $0.01) or high reward (correct response =
$0.05) on that trial (Fig. 1A). Before each search array of
objects, a target cue was presented that signaled the shape
that was to be searched for on that trial. The task-relevant
object in the cue array was indicated by color (e.g. the red
shape), with both red and green items presented to eliminate
physical stimulus confounds (Woodman 2010). Subjects were
cued to search for the same target orientation across a run of
consecutive trials before the target changed to a new, ran-
domly selected shape. Subjects responded to the item in the
search array of the task-relevant color (e.g. red) as fast and
accurately as they could on each trial by pressing 1 of the 2
buttons on a gamepad. Feedback at the end of the trial indi-
cated how many cents had been earned in bonus money paid
to the subject. Our analyses focused on trial runs in which
high reward was possible in the middle of a same-target run
of trials (i.e. target repetition 5). These trial runs afforded us
the opportunity to see whether the CDA indexing the target
representation in visual working memory returned following
a high-reward cue.

Reaction time (RT) data showed that responses became
faster across trials of search for the same target (Fig. 1B),
yielding a significant main effect of target repetition
(F4,56 = 2.998, P < 0.03). Post hoc analysis was significant for
repetitions 1 versus 5 (P < 0.03).

Critically, there was a marked reduction in RT following
high- relative to low-reward cues even after 5 trials of search-
ing for the same target (F1,14 = 9.851, P < 0.01; Fig. 1B).
Search accuracy was near ceiling and did not significantly
differ across target repetitions (mean: 97.2% correct; P > 0.30)
or between low- and high- reward cues (mean: 97.7% correct;
P > 0.75). Across the same-target runs, we found that the CDA
amplitude elicited by the target cue systematically decreased
(Fig. 1C,D), similar to the pattern of RTs, while P170 ampli-
tude systematically increased in negativity (Figs 1D and 2),
resulting in a significant main effect of target repetition on
CDA amplitude (F4,56 = 4.115, P < 0.01) and P170 amplitude
(F4,56 = 2.832, P < 0.04). Post hoc analyses were significant for
repetitions 1 versus 5 (CDA, P < 0.02 and P170, P < 0.02).
Further, we found a significant correlation between the
learning-related changes in P170 amplitude and RT improve-
ments from target repetitions 1 to 5 (r =−0.719, P < 0.01).
This is as we expected if subjects were becoming increasingly
reliant on long-term memory representations of the target
item across the same-target runs. However, when the fifth
trial in a same-target run was preceded by a high-reward cue,
we found that the CDA returned to the amplitude measured
when a new target orientation was introduced. This resulted
in the CDA amplitude on the fifth target repetition being
significantly larger for high- relative to low-reward cues
(F1,14 = 10.701, P < 0.01; Fig. 1C,D). In contrast, the amplitude
of the P170 was only slightly more negative and not signifi-
cantly affected by reward (P > 0.20; Fig. 1D). We also

quantified these learning and reward-based effects using
time-frequency analyses, because previous work has pro-
posed that visual working memory maintenance can be
measured as the strength of the alpha-band suppression con-
tralateral to a remembered stimulus (Mazaheri and Jensen
2008, 2010; van Dijk et al. 2010). These analyses of the
frequency content converge with our measurements of CDA
amplitude (learning: F4,56 = 2.851, P < 0.04 and reward:
F1,14 = 9.589, P < 0.01; Fig. 3). Thus, our findings support the
hypothesis that, with high rewards at stake, subjects
implement more potent attentional control by reloading into
working memory the target representation to supplement the
representations accruing in long-term memory that typically
guide attention after a short period of learning (Logan 1988,
2002; Carlisle et al. 2011). These redundant target represen-
tations in working and long-term memories result in faster
behavioral responses during search for targets in complex
scenes.

We reasoned that if the reward-triggered reinstatement of
the working memory representations of the target was the
source of the effects of reward on behavior, then we should
be able to use the magnitude of the CDA amplitude rebound
following a high-reward cue to predict the subsequent

Figure 2. The P170 from Experiment 1. Grand-average ERP waveforms from midline
electrodes binned by target repetitions 1–2 (black), 3–4 (red), 5 low reward (blue), 5
high reward (green), and 6–7 (purple). As illustrated in Figure 1D, inset shows P170
amplitudes at electrode Fz from 170 to 370 ms (gray-shaded region) for each target
repetition following low-reward cues (cyan circles) and high reward followed by
low-reward cues (cyan squares). Error bars are 95% confidence intervals.
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speeding of the search response. Indeed, we observed that
the difference in CDA amplitude following high- relative to
low-reward cues after 5 target repetitions was correlated with
the speeding of RT across subjects (r = 0.732, P < 0.01;
Fig. 1E). This shows that the behavioral gains induced by
reward are predicted by the rebound in CDA amplitude
measured in the preceding second. Previous research with
the CDA has shown that it varies across individuals with
different visual working memory capacities (Vogel and Machi-
zawa 2004; Vogel et al. 2005; Woodman and Vogel 2008).
Each of our subjects performed an independent task used to
estimate their visual working memory capacity, allowing us to
determine whether the reward-related effects on the CDA
were simply an artifact of differences in working memory
capacity. However, we found that individuals’ working
memory capacity was unrelated to the magnitude of the
reward-triggered CDA (P = 0.542), P170 (P = 0.662), and RT
speeding (P = 0.485). Visual working memory capacity was
predictive of the learning effects we observed though. We
found that visual working memory capacity predicted the size
of the learning effects between 1 and 5 target repetitions
across low-reward trials measured with CDA amplitude
(r =−0.785, P < 0.01; Fig. 4A; the correlation remained signifi-
cant after removing the high-capacity outlier in the top left
corner, r =−0.627, P < 0.02), P170 amplitude (r =−0.821,
P < 0.01; Fig. 4B), and RT (r = 0.747, P < 0.01; Fig. 4C). These
results for CDA amplitude remained significant with P170
amplitude partialled out (r =−0.660, P < 0.01), and likewise
for P170 amplitude with CDA amplitude partialled out
(r =−0.722, P < 0.01). Additionally, we grouped subjects
based on a median split of their behaviorally estimated visual
working memory capacity (i.e. k) and compared their CDA
and P170 amplitudes measured on the first target repetition.

This analysis showed no significant differences, indicating
that both high- and low-capacity individuals started each
run of trials with essentially the same amplitude CDA
(F1,14 = 0.543, P = 0.474) and P170 (F1,14 = 1.029, P = 0.329),
but that these different groups exhibited ERPs that changed
differently as learning unfolded. This shows that individuals
with larger visual working memory capacities switch to
relying more heavily on long-term memory to guide selection
during learning, but the effect of reward on the reinstatement
of the visual working memory target and the subsequent be-
havioral benefits was a general observation across individuals
who differed in working memory capacity.

Experiment 2
Experiment 1 showed that, after attentional templates accrue
in long-term memory and start controlling attention, visual
working memory representations are reinstated when a large
reward is at stake. However, it is possible to argue that, in the
real world, the opportunity to earn large rewards is often cor-
related with the identity of the target, unlike the cuing pro-
cedure we used in Experiment 1. That is, the reward values
associated with the objects in our environment are typically
stable. When we see a gold ring on the beach, it is a high-
reward target regardless of whether we have recently been
precued about the price of gold. We designed Experiment 2
to determine whether redundant attentional templates in
working and long-term memories underlie the more efficient
processing of consistently high-reward targets.

We trained subjects (n = 15) to associate 2 classes of
Landolt-C orientations with high versus low reward (i.e. orien-
tations at 0°, 45°, 90°, and 135° vs. orientations at 22.5°,
67.5°, 112.5°, and 157.5°) with explicit instructions and feed-
back on each trial. As in Experiment 1, subjects searched for
the same target across a run of consecutive trials, but because
target assignment to reward value was stable, the trials within
each run were composed of search for the same high- or low-
reward target. Given this consistent relationship between
target identity and reward, the reward-driven CDA modulation
should be sustained as the P170 increases in negativity across
multiple consecutive high-reward trials in Experiment 2.

We again observed a clear behavioral advantage (i.e. faster
RTs) when subjects searched for a high- relative to low-reward
target across target repetitions (Fig. 5A). This behavioral
reward effect was superimposed on the learning effects found
when subjects searched for the same target across successive
trials. This led to a main effect of target repetition on search
RT across low- (F4,56 = 3.364, P < 0.02) and high-reward runs
(F4,56 = 3.032, P < 0.03). Post hoc analysis was significant for

Figure 3. Time-frequency representations of lateralized alpha-band total power during learning and reward from Experiment 1. Grand-average contralateral alpha-band
suppression data are illustrated across target repetitions. These data are synchronized to the cue stimulus and by convention shown as the difference in power from both right
and left hemifield stimuli, collapsed across the right and left hemisphere electrodes (i.e. comparable to the CDA difference wave).

Figure 4. Memory capacity correlations with neural activity and behavior during
learning from Experiment 1. The relationship between an individual’s visual working
memory capacity and the change in CDA (A) and P170 amplitude (B) from target
repetitions 1 min 5 of the low-reward runs. (C) The relationship between an
individual’s visual working memory capacity and the change in RT from target
repetitions 1 min 5 of the low-reward runs.
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repetitions 1 versus 4 (low, P < 0.05 and high, P < 0.05) and
repetitions 1 versus 5 (low, P < 0.04 and high, P < 0.03).
Search accuracy was near ceiling across low- (mean: 95.2%)
and high-reward target repetitions (mean: 97.7%) and did not
significantly differ across same-target repetitions (Ps > 0.15).

Consistent with our predictions, we found that the ampli-
tude of CDA dropped quickly across low-reward target rep-
etitions, but remained consistently higher across high-reward
target repetitions (Fig. 5B–D), whereas the P170 steadily in-
creased in negativity across both low- and high-reward con-
ditions, reaching significance in the high-reward condition
across repetitions 1 to 7 (F6,84 = 2.158, P < 0.05; Fig. 6A–C)
and predicting learning-based RT speeding similar to Exper-
iment 1 (r =−0.729, P < 0.01). Importantly, the consistently
higher CDA amplitude across runs of high-reward targets rela-
tive to the gradually decreasing CDA amplitude across runs of
low-reward targets was evidenced by an interaction between
repetition and reward value (F4,56 = 3.060, P < 0.03; Fig. 5B–
D). This interaction was also observed in the time-frequency
domain for contralateral alpha-band suppression (F4,56 =
5.329, P < 0.01; Fig. 7A,B). It is noteworthy that the P170 was
not significantly modulated by reward value, consistent with
results from Experiment 1 and indicated graphically by

overlapping 95% confidence intervals (Fig. 6C). Additionally,
high-capacity individuals exhibited a larger drop in CDA am-
plitudes (r =−0.791, P < 0.01; Fig. 8A), increase in P170 am-
plitudes (r =−0.693, P < 0.01; Fig. 8B), and faster RTs
(r = 0.766, P < 0.01; Fig. 8C) across low-reward target rep-
etitions. The results for CDA amplitude remained significant
when P170 amplitude was partialled out (r =−0.670,

Figure 7. Time-frequency representations of lateralized alpha-band total power
during learning and reward from Experiment 2. Grand-average contralateral alpha-band
suppression data are illustrated across target repetitions during consecutive low- (A)
and high-reward runs (B). These data are synchronized to the cue stimulus and by
convention shown as the difference in power from right and left hemifield stimuli,
collapsed across the right and left hemisphere electrodes.

Figure 6. The P170 from Experiment 2. Grand-average ERP waveforms from midline
electrodes for low- (A) and high-reward runs (B), binned by target repetitions 1–2
(black), 3–4 (red), and 5–7 (blue). (C) P170 amplitudes measured from the
frontocentral electrode, 170–370 ms postcue onset illustrated across target
repetitions for low- (cyan circles) and high-reward runs (cyan squares).

Figure 5. Results from Experiment 2. (A) RT across target repetitions for the runs of
low (white) and high reward (green). (B) CDA amplitude across target repetitions for
the runs of low (white) and high reward (green). Error bars are 95% confidence
intervals. Grand-average ERP waveforms from posterior parietal and lateral
occipital-temporal sites contralateral (red) and ipsilateral (black) to the location of the
cue. The data are binned according to the number of trials during a run since a
change of target identity across low- (C) and high-reward runs (D).
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P < 0.01), but was at trend level for P170 amplitude when
CDA amplitude was partialled out (r =−0.485, P = 0.07). In
addition, these results cannot be explained by different start-
ing levels, because the CDA (F1,14 = 1.615, P = 0.226) and
P170 amplitudes (F1,14 = 1.015, P = 0.332) from the first low-
reward target repetition did not significantly differ between
high- and low-capacity subjects. These findings suggest that
individuals with high working memory capacity switch to
relying on long-term memory more quickly than low capacity
individuals. However, we observed similar effects of reward
across subjects regardless of capacity (r =−0.134, P = 0.634),
similar to Experiment 1.

The findings of Experiment 2 address 2 alternative expla-
nations for the findings of Experiment 1. First, the elevated
working memory-related CDA amplitude across a run of high-
reward trials rules out the alternative hypothesis that the
reward-triggered working memory reinstatement observed
following the infrequent high-reward cues in Experiment 1
was simply a release from a repetition suppression effect due
to the frequent low-reward trials. Given such an account, the
learning-induced reduction of the CDA would have been
explained as a repetition-priming effect in which the neural
response to the target cues was reduced across repetitions.
However, the findings of Experiment 2 showing that a run of
high-reward targets is immune to this reduction rule out this
story. Secondly, Experiment 2 demonstrated that objects that
are consistently high-reward targets are processed more
efficiently, because subjects store redundant target represen-
tations of these items in both working and long-term mem-
ories when searching for them in complex scenes.

Recent behavioral research shows that linking reward value
with a basic stimulus feature (e.g. color) rather than the more
complex combinations of features can cause significant and
enduring distraction (Anderson et al. 2010). Our data from
Experiment 2 allowed us to examine whether distractors

associated with large rewards along a single-stimulus dimen-
sion (i.e. orientation) would interfere with performance when
searching for low-reward targets. That is, each search array
contained 2 colored objects (Fig. 1A), one of the target color
(e.g. red) and one that was a uniquely colored distractor (e.g.
green, for counterbalancing purposes). This analysis looked at
whether a green distractor of a shape associated with high
reward would be more distracting than a low-reward green
shape when searching for a red target. We observed significant
RT slowing in the presence of a high-reward distractor (mean ±
SEM, 764 ± 21 ms) relative to a low-reward distractor
(749 ± 33 ms; F1,14 = 4.976, P < 0.05). Additionally, the magni-
tude of this high-reward distractor interference effect corre-
lated with individuals’ visual working memory capacity
(r =−0.618, P < 0.02; Fig. 9A). Most critically, we found that
CDA amplitude significantly increased on the trial after high-
reward distractor interference (F1,14 = 6.159, P < 0.03, gray
bars), resulting in faster RTs on that subsequent trial
(F1,14 = 6.725, P < 0.02; Fig. 9B). These results were obtained
by comparing CDA amplitude and RT on the high-reward
n + 1 trial with the low-reward n + 1 trial. However, similar
results were found for RT (F1,14 = 5.957, P < 0.03) and CDA am-
plitude (F1,14 = 6.331, P < 0.03) by comparing the high-reward
n + 1 trial with the high-reward n trial (Fig. 9B, ‘High’ white
vs. gray bars). This reactive use of the working memory rep-
resentation to overcome reward-based distraction occurred
despite our observation that before the subjects see the search
array with a high- or low-reward distractor, the CDA amplitude
is similar (Fig. 9B, white bars). These findings demonstrate
that working memory attentional templates can also be
reinstated as a reaction to overcome reward-related distraction.

Experiment 3
To determine whether redundant target representations in
working and long-term memories might explain reward
benefits across a variety of tasks, and not just search tasks, we
ran Experiment 3 in which subjects (n = 15) performed a
simple target discrimination task (Donders 1868/1969; Posner
and Snyder 1975; Wickens 2002). We again used cues to indi-
cate the object that might or might not be present and
measured the CDA, however, only a single, centrally pre-
sented black Landolt-C was shown on each trial (Fig. 10A).

Figure 8. Memory capacity correlations with neural activity and behavior during
learning from Experiments 2–3. The subject-wise relationship between visual working
memory capacity and the change in CDA amplitude from low-reward trials 1–5 during
search for the same target from Experiment 2 (A) and Experiment 3 (D). The
subject-wise relationship between visual working memory capacity and the change in
CDA amplitude from low-reward trials 1–5 during search for the same target from
Experiment 2 (B) and Experiment 3 (E). The subject-wise relationship between visual
working memory capacity and the change in RT from low-reward trials 1–5 from
Experiment 2 (C) and Experiment 3 (F). The correlation remained significant after
removing the outlier in C (r= 0.616, P< 0.03).

Figure 9. Reward-driven attentional capture. (A) The relationship between individual
visual working memory capacity and the magnitude of reward-driven attentional
capture (indexed as RT in the presence of a high- minus low-reward distractor). (B)
CDA amplitude on low- (“Low”) and high-reward distractor trials (“High”, white bars),
and trials following a low- (“Low”) and high-reward distractor (“High”, gray bars)
during visual search. Error bars are 95% confidence intervals.
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Demonstrating that our findings are ubiquitous across tasks,
the results of Experiment 3 are essentially identical to those of
Experiment 1. Subjects responded faster with repeated dis-
crimination of the same low-reward target (F4,56 = 2.968,
P < 0.03; contrasts 1 vs. 5, P < 0.05; Fig. 10B) with a consist-
ently high accuracy across repetitions (mean: 97.6% correct;
F4,56 = 1.632; P = 0.179). These behavioral results were
accompanied by a reliable decrease in CDA amplitude
(F4,56 = 2.552, P < 0.05; contrasts 1 vs. 4, P < 0.05 and 1 vs.
5, P < 0.04; Fig. 10C,D) and alpha-band suppression

(F4,56 = 2.982, P < 0.03; Fig. 11), and an increase in P170 nega-
tivity (F4,56 = 2.634, P < 0.05; contrasts 1 vs. 4, P < 0.05 and
1 vs. 5, P < 0.03; Figs 10C and 12) across consecutive low-
reward target repetitions. Learning-related changes in P170
amplitude and RT speeding from target repetitions 1 to 5
were correlated further reinforcing the connection between
P170 and the strength of long-term memory representations
(r =−0.701, P < 0.01). Similar to Experiments 1 and 2, individ-
uals’ visual working memory capacity correlated with the
difference in CDA amplitude (r =−0.703, P < 0.01; Fig. 8D),

Figure 10. Stimuli and results from Experiment 3. (A) Schematic representation of Experiment 3. (B) RT across target repetitions following low-reward cues (white), and the
critical high-reward cue (green) followed by trials with low-reward cues (gray). Error bars are 95% confidence intervals. (C) CDA and P170 amplitudes across target repetitions
following low- and high-reward cues using the same conventions as in Figure 1. Error bars are as in (B). (D) Grand-average ERP waveforms from posterior parietal and lateral
occipital-temporal sites contralateral (red) and ipsilateral (black) to the location of the cue, binned according to the number of trials since a change of target identity. (E) The
relationship between CDA amplitude and RT on high- minus low-reward cues at the fifth target repetition.

Figure 11. Time-frequency representations of lateralized alpha-band total power during learning and reward from Experiment 3. Grand-average contralateral alpha-band
suppression data are illustrated across target repetitions. These data are synchronized to the cue stimulus and by convention shown as the difference in power from right and left
hemifield stimuli, collapsed across right and left hemisphere electrodes.
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P170 amplitude (r =−0.819, P < 0.01; Fig. 8E), and RT
(r = 0.818, P < 0.01; Fig. 8F) from low-reward target rep-
etitions 1 to 5. The results for CDA amplitude remained sig-
nificant when P170 amplitude was partialled out (r =−0.640,
P < 0.02), and for P170 amplitude when CDA amplitude was
partialled out (r =−0.677, P < 0.01). These differences

between high- and low-capacity individuals could not be ex-
plained by different starting levels of their CDA (F1,14 = 1.593,
P = 0.229) or P170 (F1,14 = 0.117, P = 0.738) at the beginning
of each run of trials. Additionally, the change in CDA and
P170 amplitudes during learning (i.e. target repetitions 1 min
5) were significantly correlated across experiments (Exper-
iment 1: r = 0.583, P < 0.03, Experiment 2: r = 0.568, P < 0.03,
Experiment 3: r = 0.707, P < 0.01; Fig. 13A–C). It should be
pointed out that not all subjects exhibited similarly strong
CDA and P170 differences during learning. However, these
individual differences were consistent across experiments in
that those subjects with little change in CDA amplitude
during learning also showed little change in P170 amplitude
during learning. This shows that the learning rate, as
measured behaviorally and electrophysiologically, was pre-
dicted by our independent estimate of subject’s visual
working memory capacity, even during a simple discrimi-
nation task without spatial uncertainty or distractors.

The reward-based results from Experiment 3 demonstrate
that even during a simple object-discrimination task, reward
incentives led individuals to engage additional top-down
control by reinstatement of the target representation in visual
working memory, which improved task performance. Follow-
ing high- relative to low-reward cues, we found a significant
decrease in RT (F1,14 = 6.200, P < 0.03; Fig. 10B) and accuracy
that did not significantly differ between reward conditions
(mean: 96.1% correct; F1,14 = 1.565, P = 0.231). Critically, we
again found a significant increase in CDA amplitude
(F1,14 = 7.132, P < 0.02; Fig. 10C,D) and lateralized alpha sup-
pression (F1,14 = 8.030, P < 0.02; Fig. 11), but no significant
change in P170 (P > 0.08) between high- and low-reward
cues. Moreover, the difference in CDA amplitude and RT fol-
lowing high- versus low-reward cues was significantly corre-
lated across subjects (r = 0.798, P < 0.01; Fig. 10E), indicating
that reward-based behavioral gains can be predicted by the
magnitude of the CDA indexing the reinstatement of the atten-
tional template in working memory. However, reward-driven
CDA (r =−0.367, P = 0.178) and RT (r = 0.357, P = 0.192)
effects were uninfluenced by differences in individual visual
working memory capacity, showing that these reward effects
are a general mechanism used across individuals with differ-
ent working memory capacities. In sum, the results obtained
from Experiment 3 underscore the reliability and generality of
our findings across different tasks. Given the simplicity of the
target discrimination task in Experiment 3, it appears that the
recruitment of working memory to aid the cognitive control
provided by long-term memory is a general mechanistic
response to reward across tasks that vary across a large range
of complexity. These findings again show that the reward-

Figure 13. CDA and P170 correlations during learning in Experiments 1–3. The relationship between an individual’s CDA and P170 amplitudes from target repetitions 1 minus 5
of the low-reward runs in Experiments 1 (A), 2 (B), and 3 (C).

Figure 12. The P170 from Experiment 3. Grand-average ERP waveforms from
midline electrodes binned by target repetitions 1–2 (black), 3–4 (red), low reward 5
(blue), high reward 5 (green), and 6–7 (purple). As illustrated in Figure 10C, inset
shows P170 amplitudes at electrode Fz from 170 to 370 ms (gray-shaded region) for
each target repetition following low-reward cues (cyan circles) and high reward
followed by low-reward cues (cyan squares). Error bars are 95% confidence intervals.
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based effects are driven by redundancy gains in having both
visual working and long-term memory representations facili-
tating the perception of target objects.

Experiment 4
To rule out that our findings were due to the possibility of
penalties on high-reward trials with incorrect responses, we
re-ran Experiment 1 without the possibility of penalties on
incorrect high-reward trials. The results of this experiment
were identical to those of Experiment 1. Specifically, RTs
were increasingly faster with each trial searching for the same
target (F4,56 = 2.722, P < 0.05; Fig. 14A), and markedly
reduced following high- relative to low-reward cues after 5
trials of searching for the same target (F1,14 = 5.449, P < 0.04;
Fig. 14A). Search accuracy was near ceiling and did not sig-
nificantly differ across target repetitions (mean: 96.3% correct;
P > 0.30) or between low- and high-reward cues (mean: 95.3%
correct; P > 0.45). Across the same-target runs, we observed a
significant CDA amplitude decrease (F4,56 = 4.432, P < 0.01;
contrasts 1 vs. 5, P < 0.03; Fig. 14B), and a P170 amplitude
increase in negativity (F4,56 = 2.600, P < 0.04; contrasts 1 vs. 5,
P < 0.04; Fig. 14B). When the fifth trial in a same-target run
was preceded by a high-reward cue, we found that the
CDA returned to its full amplitude (F1,14 = 8.992, P < 0.01;
Fig. 14B), comparable with when a new target orientation
was introduced (i.e. target repetition 1), while reward-
triggered P170 modulation was not significant (P > 0.14).
Finally, we observed that the difference in CDA amplitude
following high- relative to low-reward cues after 5 target
repetitions was correlated with the speeding of RT across sub-
jects (r = 0.682, P < 0.01; Fig. 14C), indicating that the behav-
ioral gains induced by reward are predicted by the rebound in

CDA amplitude. Thus, our findings show that the possibility
of receiving a large reward rather than incurring a large
penalty is sufficient to lead subjects to exercise more precise
attentional control by reloading the target representation into
working memory to supplement the representations accumu-
lating in long-term memory that typically guides attention
after a short period of learning.

Spatial Distributions and Downstream Effects
We assessed the spatial distributions of the CDA and P170 by
calculating current density distributions (see Materials and
Methods for details). The current distributions were similar to
the voltage distributions across the scalp during the time
windows of the CDA and P170. The current density

Figure 14. Results from Experiment 4. (A) RTs across target repetitions following
low-reward cues (white), and the critical high-reward cue (green) followed by trials
with low-reward cues (gray). Error bars are 95% confidence intervals. (B) CDA
amplitude across target repetitions following low-reward cues (white bars), and the
critical high-reward cue (green bar) followed by trials with low-reward cues (gray
bars). Superimposed is the simultaneously measured P170 amplitude across the
same low-reward cues (cyan circles) and high-reward followed by low-reward cues
(cyan squares). Error bars are as in (A). (C) The relationship between individual
subjects’ CDA amplitude and RT following high- minus low-reward cues at the same
target repetition.

Figure 15. Current density distributions of P170 and CDA from Experiment
1. Distributed current densities projected across the cortical surface for the P170 (top
view) and CDA (lateral rear view). The P170 model was computed based on the
cue-locked grand-average ERPs from 170 to 370 ms using all scalp electrodes. The
CDA model was computed based on the contralateral minus ipsilateral cue-locked
grand-average ERP difference waves from 300 to 1000 ms using all scalp electrodes.
Although both left and right visual field conditions are included in the CDA model, for
visualization purposes all CDA contralateral signals are projected onto the left
hemisphere.
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topographies illustrated in Figure 15 show that the lateral pos-
terior activation of the CDA decreased in magnitude and cov-
erage across the cortical surface, while the frontomedial
distribution of the P170 increased in magnitude and spread
across the cortical surface as subjects continued to search for
the same low-reward target. The cortical coverage and magni-
tude of current density of the CDA increased when a high
reward was expected. In all experiments, the current distri-
butions contributing to the CDA explained 87–94% of the var-
iance, while that contributing to the P170 explained 83–95%
of the variance. These findings are consistent with the pre-
vious reports of the spatial topography of the CDA (Vogel and
Machizawa 2004; Vogel et al. 2005; Woodman and Vogel
2008) and P170 (Voss et al. 2010) when these components
were measured in isolation. The differences in current distri-
bution, latency, and correlations with behavior all support the
conclusion that these different ERP components are indices of
separate cognitive processes in working and long-term
memories.

Finally, to verify that the deployment of attention during
the visual search tasks was modulated by our learning and
reward manipulations as indicated by subjects’ RT speed, we

examined the electrophysiological responses during visual
search using an ERP component known to be sensitive to the
deployment of covert visual attention (i.e. N2pc, Luck and
Hillyard 1990; Luck et al. 1993). RT is a useful index of the
output of all of the computations performed during a task,
but we used the N2pc to more directly measure the influence
of our manipulations on this mechanism of perceptual atten-
tion (Woodman and Luck 2003). The results of the analyses of
the N2pc across the learning and reward manipulations of
Experiment 1 are shown in Figure 16. In the experiments
where it was possible to measure an N2pc during search (i.e.
Experiments 1, 2, and 4), we found a systematic increase in
N2pc amplitude as the subjects searched for the same target
across the runs of low-reward trials (Experiment 1:
F4,56 = 2.963, P < 0.03; Experiment 2: F4,56 = 3.144, P < 0.03;
Experiment 4: F4,56 = 2.836, P < 0.04). Post hoc contrasts
showed that repetitions late in the run of trials were driving
these effects relative to the significantly smaller amplitude
N2pc to the targets at the beginning of the runs (1 vs. 4:
Experiment 1, P < 0.05; 1 vs. 5: Experiment 1, P < 0.05; Exper-
iment 2, P < 0.05; Experiment 4, P < 0.04). The amplitude of
the N2pc was also robustly increased following high- relative
to low-reward cues on the critical fifth target repetitions
(Experiment 1: F1,14 = 9.025, P < 0.01; Experiment 4:
F1,14 = 9.856, P < 0.01). In Experiment 2, the N2pc was con-
sistently enhanced across all trials in the runs of high-reward
trials relative to the gradually increasing N2pc observed
across the runs of low-reward trials as evidenced by an inter-
action between repetition and reward value (F4,56 = 3.963,
P < 0.02). These results provide evidence that converges with
the behavior in showing that attention was more precisely
tuned to the target features across the short bursts of learning
and when a large reward was at stake.

Discussion

The present study shows that reward-driven modulations of
information processing and attentional selection can be
accounted for with existing cognitive models, but with speci-
fying that redundant memory representations can be concur-
rently engaged to control processing (Desimone and Duncan
1995; Logan 2002; Bundesen et al. 2005). The present study
shows that neuroeconomic influences can create a dynamic
situation in which the source of cognitive control involves the
interplay of working and long-term memory representations.
Our electrophysiological findings show that long-term memory
plods along accumulating representations of instances search-
ing for a specific item, regardless of its reward value. In con-
trast, the working memory representations are used in a more
responsive manner to supplement cognitive control when
necessary. Consistent with this, we found that high stakes
triggered the recruitment of visual working memory to sup-
plement long-term memory. Moreover, when a potent, high-
reward distractor slowed processing on a given trial, the brain
responded to this by recruiting visual working memory on
the following trial to recover from this distraction. It is there-
fore possible that visual working memory is called upon as a
more general purpose top-down strategy to overcome distrac-
tion irrespective of reward processing. Our simultaneous
measurements of multiple components indexing working and
long-term memories provide novel insights into how the

Figure 16. Search array-locked ERPs from Experiment 1. (A) Grand-average ERP
waveforms from lateral occipital electrodes contralateral (red) and ipsilateral (black) to
the search array target location across target repetition. N2pc components are
shaded gray. (B) N2pc amplitude across target repetitions following low-reward cues
(white bars), and the critical high-reward cue (green bar) followed by trials with
low-reward cues (gray bars). N2pc amplitude is the contralateral minus ipsilateral
difference wave between 200 and 300 ms postsearch array. Error bars are 95%
confidence intervals.
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memory representations that control attention change in the
face of potential rewards.

Our findings add to a developing literature demonstrating
robust modulations of attentional control and learning during
attention-demanding tasks by manipulations of reward (Della
Libera and Chelazzi 2006, 2009; Serences 2008; Kiss et al.
2009; Peck et al. 2009; Raymond and O’Brien 2009; Krebs
et al. 2010; Navalpakkam et al. 2010; Hickey et al. 2010a,
2010b). For example, prior work has shown that sustained at-
tentional suppression is only present in high-reward situations
(Della Libera and Chelazzi 2006), and that subjects can more
efficiently select stimuli that have been previously tied to
large reward, but have difficulty ignoring these stimuli (Della
Libera and Chelazzi 2009; Anderson et al. 2010) even when
they are independent of goals and salience (Anderson et al.
2010). Such reward maximization behavior is robust across
multiple visual features and does not depend on the type of
motor response (Navalpakkam et al. 2010). Reward-based
perceptual and attentional advantages have also been shown
to influence stimulus detectability, leading to decreased sensi-
tivity for reward-related stimuli in the attentional blink task
(Raymond and O’Brien 2009). Moreover, many of these
reward-based attentional effects may be due to individual
differences originating from personality traits such as reward-
seeking (Hickey et al. 2010b). The current study is consistent
with this growing literature, but also suggests a new perspec-
tive on the mechanisms underlying these effects—the use of
converging memory representations to enhance attentional
priority and to optimize performance.

Our findings shed light on the nature of the transition
between working and long-term memories during learning.
Following from Fitts and Posner (1967), theories of memory
and learning have proposed that as we become practiced at a
certain task, we switch from processing information guided by
working memory representations to relying on long-term
memory representations (e.g. Anderson 2000). Alternatively,
another prominent theory of task learning posits that rep-
resentations from both memory stores race in parallel, with the
speeding of RTs with practice being due to the fast long-term
memory processes more frequently winning the race to cat-
egorize the task-relevant objects as experience accrues (Logan
1988, 2002). This latter model proposes that we should con-
tinue to see the ERP index of working memory representations
during learning and across experience as the effects of long-
term memory representations mount. Our findings support
this account of learning and suggest that the nature of the tran-
sition between working and long-term memories is a matter of
degree rather than an all-or-none phenomenon. That is,
during learning, our electrophysiological evidence shows a
gradual tradeoff between using working and long-term
memory representations to guide attention. Working memory
even appeared to be marginally engaged later in learning (e.g.
target repetitions 6–7) when long-term memory was the
primary controller of attention. However, in our experiments
and others (Carlisle et al. 2011), subjects were cued a
maximum of 7 times with the same object before having to
switch to a new search target, and thus future work using
longer runs is needed to determine whether and where, in its
time course, working memory-guided processing becomes
completely disengaged and RT asymptotes. In addition, it is
possible that the switch from using working memory to using
long-term memory representations to control attention is a

punctate event (Rickard 1997), but that the averaging that was
necessary to measure the ERPs smeared out this transition. We
are exploring the possibility that other measurement tech-
niques might be able to distinguish between a gradual and a
discrete transition between memory systems. However, the
present findings clearly show how separate electrophysiologi-
cal indices can be used to study the types of memory represen-
tations that control information processing as participants
become proficient at a particular task.

The instance theory of attention and memory is the natural
modeling framework in which to integrate and explain the
current findings (Logan 1988, 2002). Briefly, instance theory
conceives of representations from working and long-term
memories as runners racing toward a threshold with the cog-
nitive process triggered once the threshold is crossed by the
first runner. In the context of the present study, we can view
the deployment of attention to task-relevant items in the
visual search array as the process of interest. With a larger
number of runners, the average finishing time will be faster
assuming variability in the speed of the runners. As a result,
this theory predicts that when we have more representations
in multiple memory stores converging to drive attention to
the target objects in the scene, we will have more efficient
processing of the target information. Our work extends this
basic logic by proposing that top-down redundancy not only
occurs at the start of learning, but can also be implemented
whenever it would be adaptive to accelerate visual proces-
sing. Alternatively, it is possible that subjects rely on infor-
mation stored exclusively in working memory to tune
attention in high stakes situations. However, this usage of
working memory would need to be acting on a system in a
different state than it faces when a new target is presented to
account for the behavioral effects. Experiment 2 of the
current study is a special and interesting case in which visual
cognition appears to step on the accelerator repeatedly across
high-reward trials. Moreover, across all experiments subjects
appear to perseverate on the strategy of using redundant rep-
resentations to more precisely control attention. This is sup-
ported by the observation that the CDA remains slightly
elevated for a couple of trials following the high-reward trial
(i.e. as indicated by the difference between gray vs. white
bars in Figs. 1, 10, and 14). Future modeling simulations in
conjunction with brain and behavioral data will be necessary
to verify that a cognitive model can in fact predict that proces-
sing will be more efficient after a moderate amount of task
practice when working memory representations are brought
back on line as well as in cases when working memory
reengagement is triggered repeatedly on trial after trial.

Our empirical findings may provide an explanation for why
several clinical disorders, like schizophrenia and attention
deficit hyperactivity disorder, appear to demonstrate a cluster-
ing of impairments that include attention and working
memory deficits, abnormal reward processing, and dysfunc-
tion of the dopaminergic system (Zubin 1975; Seeman et al.
1993; Gong et al. 2011). The present study suggests that these
impairments might have a common locus in the information
processing system of the brain, instead of being due to a
diversity of deficits scattered across distinct cognitive mechan-
isms with different neural substrates. Specifically, a visual
working memory impairment that prevents the use of this
mechanism in responding to changing environmental
demands can manifest itself in disordered focusing of
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attention, reactions to reward value, and change of task or
target, such as in the Wisconsin Card Sorting task.

In this study, we used concurrent measurements of electro-
physiological indices of working and long-term memories to
understand how information processing changes in the face
of reward. The paradigm we developed allows us to observe
short bursts of learning both behaviorally and electrophysio-
logically, providing a proving ground for these concurrent
measures. But we believe that this combination of measures
can be used to determine the nature of the memory represen-
tations brought to bear during a host of different tasks and
paradigms. These noninvasive electrophysiological tools can
be used with normal adult subjects as well as a variety of
different clinical or developmental populations.
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