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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Maintaining and removing information in mind are 2 fundamental cognitive processes that

decline sharply with age. Using a combination of beta-band neural oscillations, which have

been implicated in the regulation of working memory contents, and cross-trial neural variabil-

ity, an undervalued property of brain dynamics theorized to govern adaptive cognitive pro-

cesses, we demonstrate an age-related dissociation between distinct working memory

functions—information maintenance and post-response deletion. Load-dependent

decreases in beta variability during maintenance predicted memory performance of youn-

ger, but not older adults. Surprisingly, the post-response phase emerged as the predictive

locus of working memory performance for older adults, with post-response beta variability

correlated with memory performance of older, but not younger adults. Single-trial analysis

identified post-response beta power elevation as a frequency-specific signature indexing

memory deletion. Our findings demonstrate the nuanced interplay between age, beta

dynamics, and working memory, offering valuable insights into the neural mechanisms of

cognitive decline in agreement with the inhibition deficit theory of aging.

Introduction

Working memory is a basic cognitive function markedly affected by aging [1,2]. Efficient

working memory function is facilitated by multiple processes. On the one hand, processes that

promote maintenance of information are important [3]. Emerging research has identified the

neural mechanisms contributing to maintenance deficits with age [4]. On the other hand, pro-

cesses that remove information when it loses its relevance are equally important [5]. Failure to

remove irrelevant thoughts from mind can obstruct our capacity-limited systems and interfere

with the maintenance of relevant information [6,7]. In fact, a leading theory of neurocognitive
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aging—the inhibition deficit theory—suggests that impairments in the ability to delete infor-

mation from working memory are what primarily contribute to age-related decline [8].

Despite the considerable body of work on age-related deletion deficits in distractor inhibition

[9], only limited attention has been given to the deletion of targets after responses, with no ref-

erence to the underlying neural mechanisms.

Beyond its well-studied role in sensorimotor control, rhythmic neural activity in the beta

band (15 to 25 Hz) has been suggested to regulate the status of working memory contents [10–

12]. Dynamics in beta-band activity reflect working memory processing. There is a decrease in

beta activity when information needs to be maintained and an increase when information

needs to be deleted [13]. Maintenance-related beta decrease is primarily observed in the pre-

frontal cortex [13,14]. By contrast, post-response beta increase is observed among task-related

networks involving frontal and centroparietal regions [10], facilitating removal of both mem-

ory contents and associated representations such as motor plans after responses. Specifically,

neurophysiological evidence from nonhuman primates demonstrated localized post-response

beta increase at sites containing memory information during the time course of working mem-

ory clear-out [13]. Whether such dynamics can be observed in human electrophysiology and

how these neural dynamics change with age is unknown.

We examined the neural mechanisms underlying age-related decline in multiple working

memory phases. To accommodate the increased interindividual variability in cognitive aging

[2,15], we were further interested in studying neural metrics that are capable of characterizing

individual differences in both younger and older adults. Neural variability is an understudied

property of brain dynamics, which is increasingly recognized as a sensitive index capable of

tracking intra- and interindividual brain–behavior relationships [16–18]. It reflects the joint

influence of sensory input, arousal state, attention, and high-order demand variations on brain

functions [18]. In particular, behavioral relevance of cross-trial variability has been reported in

multiple research fields, with lower variability associated with superior perception [19], more

internally guided decision-making [20], and less social conformity behavior [21]. Thus, we lev-

eraged cross-trial neural variability to examine the beta-band oscillatory dynamics during

maintenance and after response, with a particular focus on age-related differences.

Results

Pronounced age-related working memory deficits with increasing set size

Twenty younger (22.1 ± 2.5 years) and 21 older (70.6 ± 4.8 years) adults performed a delayed

match-to-sample task involving 1, 2, or 4 sequentially presented real-world objects during con-

current electroencephalography (EEG) (Fig 1A). Participants were instructed to indicate using

a corresponding button press whether a subsequently presented probe item was identical to

any one of their memory representations. Feedback was presented 0.5 s after response. Behav-

ioral performance accuracy was better in younger than older participants (Fig 1B, F(1, 39) =

5.572, p = 0.023, partial χ2 = 0.125, BF10 = 2.275), at lower compared to higher set sizes (F(2,

78) = 160.548, p< 0.001, partial χ2 = 0.805, BF10 > 100). There was a significant interaction

between set size and age group (F(2, 78) = 8.458, p< 0.001, partial χ2 = 0.178, BF10 = 59.334),

which was driven by larger age-related working memory deficits at set size 2 and 4 (set size 1, F

(1, 39) = 0.47, p = 0.497; set size 2, F(1, 39) = 6.18, p = 0.017; set size 4, F(1, 39) = 10.39,

p = 0.003). Reaction time (RT) increased with set size (Fig 1B; F(2, 78) = 52.359, p< 0.001,

partial χ2 = 0.573, BF10 > 100) and older participants were slower than younger participants (F

(1, 39) = 8.788, p = 0.005, partial χ2 = 0.184, BF10 = 7.011). There was no age × set size interac-

tion on RT (F(2, 78) = 1.655, p = 0.198, BF10 = 0.299).
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Beta variability tracks brain dynamics as hypothesized by cognitive

neurophysiological theory of aging

Changes of rhythmic activity at the trial level lead to alterations in trial-averaged power and

cross-trial variability (MaterialsAU : Pleasenotethatallinstancesof }seeMethods}havebeenchangedto}seeMaterialsandmethods}tomatchwiththeexactheadingandtoenforceconsistencythroughoutthetext:Pleaseconfirmthatthiscorrectionisvalid:and methods, S1A Fig). Rhythmic activity, unless stated other-

wise, was measured using cross-trial variability, which captures fluctuations unique to each

individual. Cross-trial beta band variability captured the load-dependent neurophysiological

changes in younger and older adults predicted by the Compensation-Related Utilization of

Neural Circuits Hypothesis (CRUNCH) [22]. CRUNCH posits that older adults would not

show a parametric neural change with memory load increases during maintenance. This is

because older adults overrecruit resources at low set sizes resulting in a resource shortage

when set size further increases. We selected the frontal and centroparietal clusters as the chan-

nels of interest due to their relevance to working memory function as revealed in previous

studies [23,24].

When examining beta variability of each set size and age group during the maintenance

phase, we observed an interaction between age group and set size in the frontal cluster alone

(Fig 2A, F(2, 117) = 3.886, p = 0.023, partial χ2 = 0.087, BF10 = 40.957; see S1 Table for centro-

parietal cluster). This suggests that age differentially influences how beta variability changes

with memory load. To further quantify this critical interaction effect, we performed linear

regression on the beta variability across the 3 set sizes for each participant and tested the slope

Fig 1. Task and behavioral results. (A) Delayed match-to-sample task. One, 2, or 4 images were presented sequentially. Intertrial interval was jittered from a

uniform distribution (1.2 to 1.6 s). (B) Behavioral results. There is a pronounced age-related memory accuracy decrease at higher loads. No significant age × set

size interaction effect was observed in reaction time. Lighter and darker colors represent younger and older adults, respectively. Error bars show standard error

of the mean. Circled dots show individual participant data. * p< 0.05, ** p< 0.01. Source data can be found at https://doi.org/10.5281/zenodo.12735828 (S1

Data).

https://doi.org/10.1371/journal.pbio.3002784.g001
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of their best fit lines at the population level. The parametric variability change with increasing

memory load was significant in younger (mean slope = −0.073, t(19) = 3.642, p = 0.002,

Cohen’s d = 0.814, two-tailed), but not older participants (mean slope = −0.024, t(20) = 1.474,

p = 0.156). In other words, while there was a load-dependent variability decrease in younger

adults, older adults failed to show such a systematic modulation. A closer examination of the

beta variability modulation pattern in older adults suggests an inability to further modulate

beta variability when the memory load increased from 2 to 4 (t(20) = 0.674, pbonferroni >

1.000), echoing predictions from CRUNCH. Analyses of the encoding phase did not reveal

any significant differences between younger and older adults, ruling out the possibility that the

observed group differences in load-dependent changes during maintenance stemmed from

the encoding phase (S1 Fig). Together, these analyses suggest that beta-band dynamics during

maintenance capture the fundamental premises of CRUNCH, and cross-trial beta variability is

equipped with the sensitivity for investigating mechanistic differences in memory processes

between younger and older adults.

Beta variability during the maintenance phase predicts working memory

performance exclusively for younger adults

Since variability-based measures are deemed superior for detecting interindividual differences

[18], we leveraged cross-trial variability to assess more fine-grained differences between age

groups. To examine whether beta variability during maintenance predicts individual memory

performance and whether such an association presents differently between the age groups, we

performed a generalized linear mixed model (GLMM), comparing the effect of frontal beta

Fig 2. Age-related beta modulation effects during maintenance and post-response. (A) Averaged beta-band variability at frontal sites during

maintenance (0 to 3 s) and post-response (0.1 to 0.5 s). Inserted panel shows mean slope of load-dependent beta variability during maintenance and

main effect of set size during post-response. Gray lines show individual data. (B) Maintenance beta variability predicts younger adults’ working

memory accuracy. The behavioral relevance of maintenance beta variability was weak at load 1 (Younger: Rhopearson = 0.202, p = 0.392; Older:

Rhopearson = 0.287, p = 0.202), suggesting that maintenance-related activity was not behaviorally predictive when the task was less demanding. (C) Post-

response beta variability at the frontal and centroparietal clusters predicts older adults’ memory accuracy. For frontal beta variability, there was an

outlier in the older group that showed high increase of beta variability. Excluding the outlier did not change the statistical significance of the correlation

between post-response variability and memory accuracy (B = 0.055, p = 0.004, R2 = 0.072). Shaded regions represent 95% confidence intervals. R2

represents variance explained by maintenance or post-response beta variability. Source data can be found at https://doi.org/10.5281/zenodo.12735828

(S2 Data).

https://doi.org/10.1371/journal.pbio.3002784.g002
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variability estimated across trials of each set size on memory accuracy between younger and

older adults (see Materials and methods). We observed a significant interaction of age group

and beta variability on memory performance (F(1, 119) = 4.330, p = 0.040, partial χ2 = 0.035,

BF10 = 8.545). This suggests a differential relationship between maintenance beta variability

and memory performance in younger and older adults. Further analysis revealed that younger

participants with lower variability during maintenance performed better (Fig 2B; B = −0.075,

p = 0.025, R2 = 0.060), especially when examining set size 2 and 4 (B = −0.137, p = 0.001, R2 =

0.218). In contrast, beta variability during maintenance failed to predict memory performance

for older adults (B = 0.003, p = 0.905). This implies that beta variability during the mainte-

nance phase not only showed load-dependent changes at the population level but also pre-

dicted interindividual differences in memory performance selectively for younger adults.

Aging, on the other hand, appeared to impede these systematic modulations to an extent that

behavioral relevance of interindividual beta variability was no longer evident in older adults.

The absence of maintenance-related activity in predicting older adults’ performance suggests

that, while maintenance is influenced by aging (as evident in CRUNCH-like observations

reported above), it may not be the primary working memory processing component that pre-

dicts behavioral differences in older adults at the individual level. In light of this finding, we

investigated age-related differences beyond the maintenance phase.

Beta variability during the post-response phase predicts working memory

performance exclusively for older adults

Given that maintenance-related beta variability could not track interindividual differences in

older adults, we hypothesized that the post-response phase may capture such differences. This

hypothesis was derived from 2 premises. One, the inhibition deficit theory implicates deletion

deficits to be the primary driver of age-related memory decline [8]. Two, beta rhythmic

dynamics post-response, particularly originating from where memory representations are

maintained, have been interpreted as the neurophysiological signal of memory deletion

[13,25]. Together, these premises link post-response beta rhythms with working memory defi-

cits in aging. To test this hypothesis, we first examined whether frontal beta variability showed

systematic changes with set size post-response (0.1 to 0.5 s). Unlike the maintenance phase

where such a systematic change was evident only in younger adults, we found that beta vari-

ability significantly reduced with increasing set sizes for both younger and older adults (Fig

2A; F(2, 117) = 4.852, p = 0.009, partial χ2 = 0.133, BF10 = 98.128), with no significant differ-

ence between groups (F(1, 117) = 0.319, p = 0.573, BF10 = 1.172) or age × set size interaction

effect (F(2, 117) = 0.658, p = 0.520, BF10 = 1.921). These findings suggest that post-response

beta dynamics continue to be associated with working memory function despite aging.

Next, we examined whether post-response beta variability predicted individual memory

performance of each set size, using a similar GLMM as was performed for the maintenance

phase. We found a surprising reversal of patterns relative to those observed during the mainte-

nance phase. Post-response frontal beta variability correlated with memory performance in

older but not younger adults (Fig 2C; Younger: B = 0.005, p = 0.847; Older: B = 0.040,

p< 0.001, R2 = 0.094; age × beta variability interaction, F(1, 116) = 4.155, p = 0.044, partial χ2

= 0.034, BF10 = 5.972). In other words, while individuals’ memory performance for younger

adults was driven primarily by frontal beta variability during maintenance, it was the post-

response variability that determined memory performance for older adults. A similar pattern

was observed for centroparietal channels (age group × beta variability, F(1,119) = 16.736,

p< 0.001, partial χ2 = 0.127, BF10 > 100; Older: B = 0.057, p< 0.001, R2 = 0.186; Younger: B =

−0.035, p = 0.086). Given the temporal progression between maintenance and post-response
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phases, one may consider the individual correlation results in older adults as a later manifesta-

tion of a maintenance-related effect, perhaps due to overall slowing of information processing

with aging [26]. However, this possibility is ruled out when examining the direction of the

association between beta variability and memory performance. While reduced variability dur-

ing maintenance predicted better performance for younger adults, it was increased variability

during the post-response phase that predicted better performance for older adults. The

dynamic change of beta variability during maintenance and post-response matches observa-

tions from previous research [13]. Our findings suggest that older and younger adults differen-

tially leverage beta dynamics during distinct working memory processes to optimize their

memory performance. Regulating beta variability during maintenance benefits younger adults

but with aging, and perhaps due to the structural and functional reorganization that accompa-

nies it [27], the neurophysiological locus predicting interindividual working memory differ-

ences in older adults shifts to the post-response phase.

With the post-response phase emerging as the possible locus of memory predictive activity

in older adults and previous evidence for marked functional reorganization with aging [27],

we examined brain networks recruited during the post-response phase, which may underlie

the different contributions of beta variability between younger and older adults. Younger

adults, whose memory performance was not associated with post-response beta variability at

the individual level, recruited a widely distributed network spanning frontal and centroparietal

brain regions (Figs 3A and S2) [10]. On the other hand, older adults showed, on average, a

spatially restricted network confined to centroparietal regions with a marked absence of fron-

tal engagement. We speculated that the sensitivity of beta variability to individual memory per-

formance in older adults may be related to the extent to which an older individual is able to

recruit the frontal cortex during the post-response phase. Indeed, the individual with the best

memory performance exhibited pronounced increases in beta variability in frontal regions rel-

ative to the participant with median memory accuracy. In contrast, the individual with the

lowest memory accuracy did not show any increase in beta variability in any region. While we

consider these results qualitative and preliminary, they suggest that the deficient ability to

involve the frontal beta rhythms may lead to memory decline with aging. This also contributes

to recognizing post-response beta variability as the sensitive index that tracks interindividual

differences in older adults.

Post-response beta dynamics likely index information deletion: Evidence

from 2 converging analyses

So far, we have observed a dissociation in the working memory phase where cross-trial vari-

ability in the beta band predicts memory performance in younger and older adults.

As previously mentioned, changes in post-response beta activity, indexed by beta bursting

or beta power, have been understood as a signature of information deletion [13,28]. Since

cross-trial variability is computed using power data from single trials, it is thus possible that

cross-trial beta variability also characterizes the deletion process. Indeed, we found power

changes at the single-trial level were associated with changes in cross-trial variability (S1A

Fig), suggesting power and variability changes likely arise from the same cognitive process in

this context. To explore this possibility, it is important to verify whether beta activity measured

in any form provides collective evidence of information deletion. To this end, we examined

how single-trial power, upon which cross-trial variability is computed, impacted memory per-

formance. Then, we extended this analysis and directly examined the association between

cross-trial variability and memory performance.

PLOS BIOLOGY Age-related dissociations in working memory functions

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002784 September 11, 2024 6 / 19

https://doi.org/10.1371/journal.pbio.3002784


First, we speculated that post-response beta power in each trial should influence the accu-

racy of the next trial. Specifically, if post-response beta increase indexes deletion of memory

representations, then stronger beta power at the single-trial level should benefit performance

in the next trial. Consequently, there should be a positive correlation between post-response

beta power of the current trial and memory performance of the next trial (brain-to-behavior

relation, an “N+1 correlation”). Indeed, larger post-response beta power increase in the previ-

ous trial facilitated performance of the current trial exclusively for older adults (Fig 3B; Older:

t(8832) = 5.662, p< 0.001, Cohen’s d = 0.175; Younger: t(9053) = 0.586, p = 0.557, permuta-

tion t test, two-tailed, alpha = 0.001; age groups × post-response beta power of previous trial, F

(1, 17817) = 4.296, p = 0.038, log odds ratio = 0.458), see S2 Table and S3 Fig). This pattern of

results fits the deletion account, suggesting that a stronger increase in beta power post-

response potentially frees up the capacity-limited working memory, thereby benefitting the

next trial’s performance.

The preceding analysis rests on power changes in single trials. Does cross-trial variability

computed using single-trial power also show evidence in favor of the deletion account? If beta

variability also indexes deletion, then the extent to which variability is modulated in the post-

response phase might be determined by the strength of the memory representations. When

memory representations are weak or partial such that they produce an erroneous response,

less deletion will be required on those incorrect trials relative to correct trials. Thus, post-

response beta variability should be smaller on incorrect trials relative to correct trials irrespec-

tive of age group (behavior-to-brain relation). This was indeed the case. Incorrect trials

showed lower frontal beta variability than correct trials (Fig 3C; F(1, 38) = 7.052, p = 0.012,

partial χ2 = 0.157, BF10 = 3.923). These effects were consistent across both younger and older

participants, with no significant difference between age groups (F(1, 38) = 0.615, p = 0.438,

BF10 = 0.451), and no interaction effect of age and correctness (F(1, 38) = 2.106, p = 0.155,

BF10 = 0.794). Thus, post-response frontal beta dynamics were more pronounced in correct

trials where the strength of memory representations was stronger and require more deletion.

Both analyses provide converging findings. The behavioral association of single-trial beta

power and cross-trial variability fits the predictions of the deletion account of beta rhythms.

This provides confidence in our understanding that the specific prediction of interindividual

Fig 3. Post-response beta activity. (A) Source reconstruction of post-response beta variability. Top panel shows cluster-based permutation t-
values (p< 0.005) when comparing post-response beta increase relative to pre-response (−0.4 to −0.1 s). Exemplars represent older participants in

the 99%, 50%, and 1% percentile of the present sample based on averaged memory accuracy. (B) Single-trial analysis. Stronger frontal beta activity

benefits memory accuracy of the next trial. Violin plot shows the distribution of trial-wise post-response beta power of trial n-1. Red crosses

represent the mean. Line plot shows the averaged data. Error bars represent standard error of the mean. (C) Correct trials showed larger post-

response beta variability increase. Colored dots represent individual participant data. Source data can be found at https://doi.org/10.5281/zenodo.

12735828 (S3 Data).

https://doi.org/10.1371/journal.pbio.3002784.g003
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differences in memory performance of older adults during the post-response phase by variabil-

ity in the beta band likely reflects a facet of the deletion process.

Control analyses: Ruling out alternative explanations for the post-response

beta increase

We have excluded several competing explanations of the post-response beta effect. First, the

increase in post-response beta variability should not be interpreted as a reflection of error

monitoring. Stronger monitoring is typically reported in incorrect trials compared to correct

trials [29]. However, we observed the opposite trend in post-response beta variability, with a

more substantial increase found in correct rather than incorrect trials. Moreover, error moni-

toring signals have typically involved lower frequency activity in the theta band [30], unlike

the beta-band frequency under consideration here. As such, beta variability increase is a poor

candidate for post-response error monitoring.

Second, increase in post-response beta activity could be interpreted as a feedforward confi-

dence estimation process [31], which plausibly explains the stronger beta variability increase

on correct trials relative to incorrect trials, overall. To address this possibility, we again lever-

aged single-trial beta power upon which variability measures are based. This time, however,

we examined the behavioral correlation of single-trial beta power on current trial performance

as done in previous studies [31]. Specifically, if beta power indexes confidence, then it should

positively correlate with memory performance in the same trial (an N-N correlation). How-

ever, this was not the case. Behavioral performance of the current trial could not be explained

by post-response beta activity at the trial level (accuracy: F(1, 17877) = 1.276, p = 0.259; RT: F

(1, 15602) = 0.894, p = 0.345), and current trial’s post-response beta power was not modulated

by accuracy (F(1, 17877) = 1.044, p = 0.307) or RT (F(1, 15602) = 1.844, p = 0.174). Thus, we

do not consider confidence-related processing, characterized by post-response beta power

increase, to be a compelling explanation in this case. Consequently, we do not consider

changes in variability, stemming from power changes, to be reflective of the confidence estima-

tion process either.

Lastly, there is a possibility that the observed N+1 correlation reflects the implementation

of a preparatory attentional state rather than deletion of previously held memory representa-

tions. However, attentional deployment is typically associated with alpha-band activity [32,33].

Control analyses on post-response alpha activity did not show any significant effects

(ps> 0.168). In addition, previous literature suggests that desynchronization of alpha rhythms

benefits next trial performance [32]. The direction of this association is opposite in our data

where it is enhanced power and variability in the beta band that are reflective of better perfor-

mance in the following trials. Moreover, given that feedback was presented after responses,

preparatory attention in service of the next trial is unlikely to be implemented until feedback

offset and the onset of the intertrial interval.

Taken together, we believe that the deletion account of the increased post-response beta

power and variability reflects a more coherent and parsimonious explanation than other

accompanying cognitive processes during the same information processing window.

Control analyses: Spectral specificity of the dissociable effects

The dissociable effects we observed as to which memory processing phase contributes to indi-

vidual performance differences in younger and older adults were specific to the beta band. The

critical interaction between age and set size during the maintenance phase was not significant

at any other frequency outside the beta band (S1 Table; ps > 0.126). We further examined

other frequencies in the post-response phase. Again, we did not observe any significant
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differences between younger and older adults outside the beta band (GLMM age × variability,

ps> 0.108). Moreover, the differences we observed during both maintenance and post-

response phases could not be explained by signal quality, as there was no significant between-

group difference in signal-to-noise ratio (SNR) in any frequency band (ps > 0.101). Thus, dif-

ferences in how cross-trial variability predicts performance during separate working memory

stages in younger versus older adults are spectrally specific to the beta band and cannot be

explained by nonspecific changes in the EEG signal.

Control analyses: Trial-averaged power modulations

Since cross-trial variability is computed using measures of power, and since cross-trial variabil-

ity results align with those observed using single-trial power data (for instance, N+1 correla-

tions above), we asked whether examining variability provides any additional benefits over

and above the examination of conventional trial-averaged power measures alone. It turned out

that trial-averaged power failed to capture several significant observations evident through the

examination of variability. First, trial-averaged beta power did not show the critical age × set

size interaction during maintenance (F(2, 117) = 2.009, p = 0.137). Moreover, trial-averaged

frontal beta power did not reflect the dissociable interindividual correlation between mainte-

nance-related beta activity and memory performance (Younger: B = −0.022, p = 0.316; Older:

B = −0.002, p = 0.912). Analyses of the trial-averaged post-response spectral activity failed to

establish the frequency-specific behavioral relevance of post-response beta activity. Despite the

significant correlation between older adults’ memory accuracy and trial-averaged frontal beta

power (Older: B = 0.022, p< 0.001, R2 = 0.117), this nonspecific correlation was also observed

in the delta band (Older: B = −0.015, p = 0.038, R2 = 0.038), alpha band (Older: B = 0.018,

p = 0.007, R2 = 0.062), and gamma band (Older: B = 0.030, p = 0.044, R2 = 0.036). Post-

response beta-band SNR showed no significant difference between age groups (F(1, 39) =

0.042, p = 0.838), neither did the trial-averaged beta power (F(1, 39) = 0.052, p = 0.820). Of

note, the absence of age differences in SNR or trial-averaged power during post-response

phase suggests that our results should not be explained by general differences between younger

and older adults in the robustness of evoked neural responses to events, which could poten-

tially mark a relevant boundary in a trial. The presence of a significant N+1 correlation using

single-trial power together with the absence of age-related maintenance effects and the absence

of spectral specificity of post-response beta activity using trial-averaged power imply that trial-

wise fluctuations are canceled out in the trial-averaging approach. Thus, cross-trial variability,

rather than trial-averaged power, in the beta band, appears to be a trait-like signature that is

more sensitive to age-related differences in distinct working memory functions. This agrees

with prevailing ideas about the greater sensitivity of variability-based measures in capturing

interindividual differences [17–19].

Discussion

Working memory function is a critical cognitive ability that deteriorates with age following

adulthood [34]. But whether different processes within working memory are differentially

affected by age remains understudied. This effort is further complicated by the fact that the

degree of deterioration is variable across people [2]. Explaining the neurophysiology of work-

ing memory decline in aging requires us to examine the constituent processes within working

memory simultaneously and consider variability at the interindividual and intraindividual lev-

els as a parameterized function to be explained, rather than mere noise [16]. To this end, we

adopted a novel approach to assess between- and within-group differences across ages. We

combined cross-trial variability, which has largely been studied with broad-band EEG signal
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and fMRI hemodynamic responses [16,17,19], with rhythmic dynamics in the beta range, and

examined them during both working memory maintenance and post-response deletion

phases. Our novel analytical approach suggests that, when considering cross-trial fluctuations

of beta power, variability explains individual differences in working memory performance

during distinct phases for each age group. Whereas individual memory performance of youn-

ger adults was explained by frontal beta variability during maintenance, memory performance

of older adults was primarily explained by post-response beta variability. Thus, task-related

cross-trial variability augments individual state-dependent characteristics and predicts behav-

ioral differences within and across age groups. With the age-related dissociations between

maintenance and post-response phases, beta variability may serve as an age-related, task-sensi-

tive signature of individual differences in distinctive working memory computations.

When developing models of age-related decline in working memory, it is imperative to

incorporate the cognitive and neural dynamics during each information processing state.

Most theories of aging are coarse-grained at the cognitive level of analysis [26], with little to

say regarding distinct information processing phases. As an example, CRUNCH offers a plau-

sible explanation for the pattern of neural effects during maintenance but does not directly

address differences in post-response deletion. Our findings provide some relevant insights.

For instance, the pattern of results during the post-response stage in the present study suggests

impairments in information deletion and a putative inability to recruit compensatory

resources. Specifically, CRUNCH would predict the involvement of additional neural pro-

cesses for rescuing impaired information deletion. This should result in the characteristically

saturated neural response pattern with increasing set sizes during the post-response phase, as

we observed during the maintenance phase. However, we found consistent positive correla-

tions between post-response beta variability and memory performance across all set sizes.

CRUNCH would also predict an overactivation of frontal beta activity or additional engage-

ment of task irrelevant regions during post-response phase to achieve efficient deletion. In

contrast, our preliminary source estimation analyses suggest an underrecruitment of frontal

regions during the post-response phase. These findings align with the inhibition deficit theory

but suggest that compensatory resources, as posited by CRUNCH, could not be instantiated by

older adults at least in the present investigation. Perhaps the inability to remove information

efficiently during the deletion phase creates a bottleneck. This bottleneck could then influence

memory maintenance in the following trial, where compensatory mechanisms during mainte-

nance can still be called upon. In this manner, inefficient information deletion may be one of

the reasons for the engagement of compensatory mechanisms during the maintenance phase.

By viewing working memory as an information processing system that needs to be continu-

ously regulated, we may be able to bridge the inhibition deficit theory with CRUNCH, through

examination of the interdependent nature of information removal and maintenance, as dem-

onstrated in the present study.

We interpret the change in post-response beta dynamics as a reflection of a memory dele-

tion process in agreement with previous studies [13,28]. This interpretation is further sup-

ported by the observation of single-trial post-response beta power influencing the memory

performance in the next trial. It is possible that changes in single-trial beta power are indices of

memory deletion, with cross-trial variability, computed using single-trial power measures,

reflecting a trait-like ability to execute and adjust the deletion process when memory needs to

be regulated rapidly over trials with varying memory loads. We further think that the overall

pattern of results sets the stage for elucidating the nature of the deletion process with greater

functional specificity. For instance, it is possible that the increases in post-response beta power

and variability signify the demand for deletion (the demand account). This account hypothe-

sizes that stronger beta engagement reflects the absolute amount of information to be deleted.
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In other words, a stronger increase in trial-wise post-response beta power would reflect a

stronger demand for deletion. And since cross-trial variability is computed from, and associ-

ated with single-trial power (S1A Fig), this relationship may be evident with cross-trial vari-

ability also. As a result, this account would expect a larger increase in beta variability with

increasing set size. For instance, it is possible that the increase in post-response beta power sig-

nifies the demand for deletion. This account hypothesizes that stronger beta engagement (both

in terms of single-trial power and cross-trial variability) reflects the absolute amount of infor-

mation to be deleted. Therefore, this account would expect a larger increase in beta variability

with increasing set size. This was not the case in our data where we observed a decrease in

post-response beta variability with increasing set size (Fig 2A, right). The overall pattern of

results can be better explained if we consider beta engagement as a reflection of the efficiency

of the deletion process (the efficiency account). The efficiency of deletion may be a composite

of the total amount of information to be removed, the state and strength of to-be-deleted

memory representations, the time available for the deletion process, and the rate at which

information can be deleted. Given a fixed period of time available for uninterrupted deletion

(500 ms in the present work), a smaller proportion of information could be removed when the

total amount of information to be removed is higher (for instance, load 4) than lower (for

instance, load 1). The negative association between beta variability and set size might suggest

that a smaller proportion of to-be-removed information has been removed in the window of

analysis at higher set sizes compared with lower set sizes. To the extent that information can be

removed more efficiently within the same time window, deletion will be facilitated and perfor-

mance on the next trial will benefit. This explains why we observe the N+1 correlations

whereby a stronger beta power in the present trial benefits performance on the following trial,

even though, overall, the efficiency of the deletion process may be lower at set size 4 given a

limited deletion period. New experiments are needed to test these novel interpretations of beta

dynamics. Mapping out the deletion dynamics over post-response periods of different lengths

[35] and various memory loads [10] may be a good starting point.

The present findings set the stage for multiple future investigations. For example, it would

be prudent to examine the role of object familiarity in the integrity of maintenance and dele-

tion processes. Older people may exhibit some differences in their ability to recall and name

objects [36–38], which could at least partially contribute to some memory differences in the

present findings. Replicating the study while measuring levels of familiarity and comparing

performance with conditions involving abstract, nonnameable objects may be one such

approach. It would also help to replicate the findings with larger sample sizes. While the pres-

ent study was adequately powered to detect an interaction effect between age and set size on

memory performance, the interindividual correlations emerging from the present investiga-

tion can now be subjected to further follow-up investigations with a larger sample size. In addi-

tion, given recent reports suggesting changes in instantaneous beta frequency on a trial-by-

trial basis [39], granular investigations on the relationship between deletion and trial-wise or

individualized peak frequencies can be implemented. Our findings also hold implications for

cognitive processes beyond those being investigated in the present study. For instance, it

would be interesting to see whether the beta rhythmic dynamics facilitating deletion in the

present study also contribute to other regulatory processes such as deprioritization [40],

directed forgetting [41], or controlled removal operations such as information suppression or

replacement [6]. Moreover, whether similar neural mechanisms contribute to the transfer of

information between working memory and long-term memory needs to be investigated, for it

may hold the key to understanding how representations of our continuous experience in

working memory are transformed into discrete, segmented representations in long-term

memory [42,43]. Finally, future research is needed to test the causal role of beta activity in
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modulating the influence from deficient deletion to subsequent maintenance in older adults. It

may turn out, as our results showing age-related dissociations between maintenance and post-

response indicate, that working memory in younger and older adults may have distinct influ-

ences of different neural mechanisms in influencing memory performance, suggesting new

directions for future model building, and, ultimately, a more comprehensive mechanistic

understanding of cognitive aging in health and disease.

Materials and methods

Ethics statement

The study protocol was reviewed and approved by the Boston University Institutional Review

Board (IRB number 4230E). The research adhered to the ethical guidelines outlined in the

Declaration of Helsinki. Written informed consent was obtained from all participants. Partici-

pants were compensated $15 per hour.

Participants

Power analysis (80% power, p = 0.05; repeated measures for the critical age × set size interac-

tion) on pilot data (n = 10) showed a Cohen’s f effect size of 0.248 for the interaction effect,

indicating that a total sample size of 28 participants (14 participants per group) would be suffi-

cient to reliably capture an effect. To account for dropouts and exceed these minimum power

calculations, we sought at least 20 participantsAU : PleasenotethatasperPLOSstyle; donotusethewordsubjectstorefertohumans:Hence; allinstancesof }subjects}havebeenchangedto}participants}throughoutthetext:per age group. Twenty-two younger adults and

21 older adults from the greater Boston metropolitan area enrolled in the study. All older par-

ticipants were prescreened either via phone or an online questionnaire to ensure study eligibil-

ity on the following criteria: (1) normal or corrected-to-normal vision and hearing; (2) fluent

English speaker; (3) no history of neurological problems or head injury; (4) never been

knocked unconscious for longer than 10 minutes; (5) not currently pregnant during the time

of study participation; (6) no metal implanted in the head; (7) no implanted electronic devices

(pacemaker, neurostimulator); (8) no formal diagnosis of severe tinnitus; (9) no formal diag-

nosis of a substance problem (related to alcohol or drugs of any kind). Two younger partici-

pants’ data were excluded from the analysis due to excessive eye blinks (>60% trials removed

in preprocessing). The final sample consisted of 20 younger participants aged 19 to 27 years

old (22.1 ± 2.5 years, 10 females, education years 16.0 ± 2.3) and 21 older participants aged 60

to 81 years old (70.6 ± 4.8 years, 7 females, education years 17.3 ± 2.9). Three older participants

performed 20 blocks, 23 blocks, and 26 blocks out of a total of 30 blocks due to fatigue.

Behavioral task

We used object stimuli from a previous study [44]. One, 2, or 4 images of objects were pre-

sented sequentially in each trial. Each object was presented for 200 ms followed by an inter-

stimulus interval (ISI) of 1,000 ms. Once all stimuli were presented, the fixation cross turned

green. After a delay of 3,000 ms, a probe image was presented for 200 ms, and participants

were asked to determine whether the probed image was either identical (50%) or different

(50%) from the previous images, by pressing one of 2 buttons on a handheld gamepad. Partici-

pants had unlimited time to respond but were instructed to respond as quickly and accurately

as possible. Feedback was presented after 500 ms of the response, in the form of a colored circle

for 1,000 ms. Yellow indicated a correct response and blue indicated an incorrect response.

Color mapping was counterbalanced across participants. New trials began after a jittered time

of 1,200 to 1,600 ms (uniform distribution). There were 30 blocks, each containing 24 trials

with mixed set sizes, resulting in a total of 720 trials evenly divided among the 3 different set
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sizes. Participants completed multiple practice blocks until they understood the instruction,

showed an averaged accuracy above 0.8, and felt comfortable proceeding.

Electroencephalography

EEG was recorded at a sampling rate of 1,000 Hz in a dimly lit EEG booth using 64 Ag/AgCl

electrodes mounted in a BrainCap elastic cap according to the international 10–20 system. The

right mastoid electrode served as the online reference. Data were online bandpass filtered to

0.01 to 125 Hz. Four EOG channels were placed at the outer canthi of each eye, above and

below the left eye. Impedance levels were kept below 10 kOhm. Participants were instructed to

fixate on the central cross throughout each trial, minimize eye blinks and facial movements,

and remain still during each block.

EEG preprocessing

EEG preprocessing and analysis were conducted using custom Matlab scripts with the

EEGLAB [45] and Fieldtrip [46] toolboxes. Raw EEG data were bandpass filtered from 0.5 to

40 Hz and re-referenced to the average of both mastoids. Broken channels were interpolated

using a spherical spline method (EEGLAB function, “pop_interp(‘spherical’)”). We extracted

epochs time-locked to delay onset (−5.7 to 6 s) and performed independent component analy-

sis (ICA) to correct artifacts caused by eye movements, blinks, heart, muscle, and line noise.

The number of removed components was slightly more in older than younger participants

(Older: 7.6 ± 2.9; Younger: 6.2 ± 1.6; t(39) = 1.926, p = 0.061). We also removed trials with

noisy data points that exceeded a voltage threshold of 100 μV. Improbable and abnormally dis-

tributed data points beyond 8 standard deviations of the mean probability distribution and

kurtosis distribution were also removed. After preprocessing steps, there were 79.4 ±10.2%

clean trials from younger adults and 80.0 ± 9.3% from older adults. Additional segmentation

was performed depending on time periods of interest with 0 to 3 s for maintenance and 0.1 to

0.5 s post-response phases.

Behavioral analyses

Mean RT was calculated based on correct trials. Trials with RTs slower than 5 s, or beyond 3

standard deviations of individuals’ own mean RT were excluded from averaging. Two-way

mixed Omnibus ANOVA was conducted with the between-participants factor of group (youn-

ger versus older) and the within-participants factor of set size (1 versus 2 versus 4). Bonferroni

correction was applied for multiple comparisons. Bayesian ANOVA was performed using

JASP 0.17.3.

Time-frequency decomposition

For each trial, we subtracted the averaged waveform of each set size to remove phase-locked

activity. Single-trial EEG spectral decomposition was then performed for frequencies ranging

from 1 to 40 Hz (1 Hz steps) using Morlet wavelets (width linearly increased from 2 to 10)

with a time window of 50 ms. Baseline normalization was performed using decibel conversion

relative to the pre-trial (−0.4 to −0.1 s) or pre-response period (−0.4 to −0.1 s) for maintenance

and response-locked analysis, respectively. SNR was calculated at the averaged power (signal)

divided by the standard deviation of the mean across trials (noise) during the interval 0 to 4 s

relative to maintenance onset.
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Variability analysis

The relative variance was calculated as the cross-trial variance change compared to the average

of the pre-trial baseline (log VarðSðtÞÞ
meanðVarðbaselineÞÞ

� �
). Preplanned analysis of beta variability focused on

the frontal cluster defined as Fz and its surrounding channels (AFz, F1, F2, FCz), and the cen-

troparietal cluster defined as CPz and its surrounding channels (Cz, CP1, CP2, Pz). Cross-trial

neural variability was calculated for each channel and then averaged within the channel cluster.

The averaged relative variance within the frequency band and time interval of interest was sta-

tistically compared with the GLMM using Matlab function “fitglme” formulated as “variability

~ age group * set size + (1 | participant)”. Age group and set size were added as fixed effects.

Link function was specified as “identity”, which is conventional for normally distributed data.

The covariance pattern for the random effect was isotropic. Bayes factor for the GLMM inter-

action effect was computed by comparing the marginal likelihoods between models with and

without the interaction effect.

To examine the load-dependent beta variability changes (Fig 2A), we performed linear

regression on the beta variability across the 3 set sizes for each participant and tested the slope

of their best fit lines versus zero at the population level. To assess the interindividual behavioral

relevance of neural variability decrease, while controlling for the intraindividual load-depen-

dent effect during maintenance and post-response (Fig 2B and 2C), GLMM was formulated as

“averaged memory accuracy ~ age group * beta variability + (1 | set size)”. The intercept of

each set size was added as the random effect because interindividual differences rather than

intraindividual manipulation (set size effect here) is the primary focus. Moreover, we antici-

pated that individuals with lower variability during maintenance would show better memory

performance across all set sizes. Averaged memory accuracy for each set size would theoreti-

cally range from 0 to 1 and the accuracy distribution in our case showed negative skewness.

Thus, response distribution was specified as “Gamma” with inverse link function. We further

confirmed the result by normalizing the response variable (Matlab function “betafit” and

“betainv”). With the normalization, the link function was specified as “identity” and the

response distribution was specified as “normal”. Regardless of the choices of link function and

response distribution, results were consistent (maintenance: F(1, 119) = 3.806, p = 0.053, BF10

= 6.473; post-response: F(1, 116) = 3.681, p = 0.058, BF10 = 6.102). Regarding the significant

interaction term between age group and beta variability, we constructed a regression model

that included set size and beta variability as predictors separately for each age group. Similar

analyses were performed on post-response frontal beta variability. An outlier in the older

group showing a large post-response frontal beta increase (Fig 2C) was identified and excluded

from the ANOVA analysis.

Comparison between correct and incorrect trials was performed on load-4 trials to obtain a

sufficient number of incorrect trials (Fig 3C). Given the unbalanced proportion of correct and

incorrect trials, we subsampled from correct trials to avoid bias arising from the unequal num-

ber of trials and iterated for 200 times. The averaged results of all iterations were used for sta-

tistical tests. An outlier was excluded from the Omnibus ANOVA analysis. Including the

outlier did not alter the conclusion (F(1, 39) = 6.177, p = 0.017, partial χ2 = 0.137, BF10 =

3.016).

Single-trial analysis

N+1 analysis was performed to reveal the behavioral influence of post-response beta activity

on the next trial. Since variability is an aggregated index across trials, we used trial-wise power

for this analysis. Single-trial beta power during maintenance (0 to 3 s after stimulus onset) and
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post-response (0.1 to 0.5 s after response, with the first 100 ms removed to avoid motor arti-

facts and temporal smearing) were added into the GLMM model with the formula “Memory

accuracy (n) ~ maintenance beta power (n) * set size (n) * post-response beta power (n-1) * set

size (n-1) * age group + (1 + maintenance beta power + post-response beta power (n-1) + set

size (n) + set size (n-1) | participant)”. The response distribution was specified as “Binomial”

and the link function was specified as “logit”. We hypothesized that memory accuracy of the

current trial was determined by set size and maintenance activity of the current trial, set size of

the previous trial as well as the extent to which previous information was deleted. Participants’

intercept and slope variations of the fixed effect were added as the random term. Given the sig-

nificant interaction effect between age group and post-response beta power of trial n-1, we sep-

arated trial n based on response accuracy and compared the post-response beta power of trial

n-1 between correct and incorrect trials in each age group using a permutation t test (Fig 3B,

permutation times = 10,000, two-tailed, alpha = 0.001). The same analysis was conducted on

within-trial variability calculated as the variance of normalized beta power during the mainte-

nance and post-response phases.

N-N analysis was performed to investigate the relationship between post-response beta

power and response confidence at the trial level. We examined whether the post-response beta

power of the current trial could explain the same trial’s behavioral performance (“accuracy (n)

or RT (n) ~ post-response beta power (n) * group * set size (n) + (1+ post-response beta power

+ set size (n) | participant)”). When using RT as the response index, the link function was spec-

ified as “inverse” for the gamma distribution. Only correct trials were included for the analysis

of RT. When using accuracy as the response index, the link function was specified as “logit”

for the binomial distribution. Additionally, we modeled the influence of response on post-

response beta power (“post-response beta power (n) ~ RT (n) or accuracy (n) * group * set size

(n) + (1+set size (n) + RT (n) or accuracy (n) | participant)”) with the link function specified as

“identity” for the normal distribution.

Source localization

Linearly constrained minimum variance (LCMV) beamforming was used to reconstruct the

cortical sources of post-response neural variability changes. Sensor-level data were referenced

to the common average. A standard anatomical MRI and a boundary element method (BEM)

headmodel from the Fieldtrip toolbox were used to construct a 3D template grid at 1 cm reso-

lution in Montreal Neurological Institute template space. Given the distance between EEG

electrodes and the scalp, we moved the brain surface 5 mm inwards from the skull to accom-

modate BEM stability (“ft_prepare_sourcemodel”). Channel neighborhood was defined using

the default EEG template (“easycapM11_neighb.mat”). A common spatial filter was computed

based on band-passed (15 to 25 Hz) EEG time series of all set sizes. Virtual channel time

courses for all voxels were reconstructed separately for each set size using the common filter.

We then performed time-frequency decomposition and calculated the relative variance on this

virtual-channel data as we did on the sensor level. The leadfield comprises 4,050 grids. Source

space cluster-based permutation tests were conducted using paired t tests on response relative

to the pre-response baseline (−0.4 to −0.1 s). Monte Carlo nonparametric randomization was

iterated for 10,000 times with the alpha level of the permutation test set to 0.005.

Supporting information

S1 Fig. Beta variability during encoding. Related to Fig 2. (A) Example data for load 1. Gray

curves represent trial-wise beta power. The purple curve represents the average of all trials,

and the green curve illustrates cross-trial variability. Cross-trial beta variability and trial-
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averaged beta power showed consistent patterns across time. They were correlated during

maintenance (Load 1: Pearson’s Rho = 0. 841, p< 0.001; Load 2, Pearson’s Rho = 0.871,

p< 0.001; Load 4, Pearson’s Rho = 0.683, p< 0.001) and post-response phases (Load 1: Pear-

son’s Rho = 0. 939, p< 0.001; Load 2, Pearson’s Rho = 0.951, p< 0.001; Load 4, Pearson’s

Rho = 0.947, p< 0.001). Changes in single-trial beta power affect cross-trial variability. When

we median-split beta power of each participant and compared the variance between subset of

trials with higher and lower beta power, we found that trials with higher beta power had

greater variance than those with lower beta power (maintenance: t(40) = 3.754, p< 0.001,

Cohen’s d = 0.747; post-response: t(40) = 1.818, p = 0.038, Cohen’s d = 0.275, one-tailed t test).

(B) Beta-band variability time course. Vertical dashed lines denote stimulus onsets. (C) Item-

specific variability during encoding. Data were averaged from variability changes during each

stimulus presentation (0 to 1.2 s). (D) Slope of variability changes. Boxplot shows the distribu-

tion of slopes. Slopes were obtained from linear fitting of beta variability changes induced by

consecutive stimulus presentations in both load 2 and load 4. The central line represents the

median, and black crosses represent outlier data points beyond 1.5 times the interquartile

range. No significant age-related differences were observed in the slopes (Load 2: t(39) = 1.054,

p = 0.298; Load 4: t(39) = 1.052, p = 0.299). Source data can be found at https://doi.org/10.

5281/zenodo.12735828 (S4 Data).

(TIF)

S2 Fig. Cross-trial neural variability during maintenance and post-response. Related to

Figs 2 and 3. (A) Time-frequency map of neural variability at frontal sites. (B) Frontal beta var-

iability during maintenance phase. Time frequency (difference) map shows frontal neural vari-

ability averaged across set sizes. Topographical plots show the averaged beta-band variability

(15 to 25 Hz) during the maintenance interval (0 to 3 s). Black dots on the topography high-

light the frontal channels used to generate time-frequency maps. Shaded error bars on the

time series represent the between-participant standard error. The colored vertical solid lines

on the x-axis correspond to the mean RT of each set size. (C) Time-frequency (difference)

map of post-response neural variability changes at the frontal site. (D) Topography of post-

response (0.1 to 0.5 s) beta variability increases. The highlighted channels passed cluster-based

permutation tests (alpha = 0.001, two-tailed).

(TIF)

S3 Fig. Related to Fig 3. The influence of post-response beta power of previous trials on mem-

ory accuracy. (A) The interaction effect among set size of the previous trial, post-response beta

power of the previous trial, and the current trial’s set size. (B) The interaction effect of set size

of previous trials, post-response beta power of the previous trial, and age groups. (C) The inter-

action effect among set size of previous trials, post-response beta power of the previous trial,

current trial’s set size, and age groups. Error bars represent standard error of the mean. Source

data can be found at https://doi.org/10.5281/zenodo.12735828 (S3 and S5 Data).

(TIF)

S1 Table. Related to Fig 2. Analysis of maintenance-related activity. The critical interaction

between age group and set size was observed in the beta band (15–25 Hz). The frequency band

of interest was guided by existing literature; however, we also explored other frequency bands

to demonstrate frequency specificity. While other spatiospectral combinations did not show

significant age × set size interaction effects, we proceeded to separate age groups and examined

interindividual correlation between maintenance activity and memory accuracy for complete-

ness.

(DOCX)
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S2 Table. Related to Fig 3. GLMM output table of single-trial N+1 analysis using the formula

“Accuracy (n) ~ set size (n) *maintenance beta power (n) * set size (n-1) * post-response beta

power (n-1) * age group+ (1 + set size (n) + maintenance beta power (n) + set size (n-1)

+ post-response beta power (n-1) | participant)”. Participants’ accuracy of the current trial (n)

is determined by set size and maintenance beta power of the current trial n, as well as set size

and post-response beta power of the previous trial n-1.

(DOCX)

S1 Data. Source data of Fig 1.

(CSV)

S2 Data. Source data of Fig 2.

(XLSX)

S3 Data. Source data of Fig 3.

(XLSX)

S4 Data. Source data of S1 Fig.

(XLSX)

S5 Data. Source data of S3 Fig.

(XLSX)
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